高中物理,牛顿定律,急如图所示,Pa,Pb,Pc是竖直平面内的三根固定的光滑细杆,P,a,b,c,d位于同一圆周上,d点为圆周的最高点,c为圆周的最低点,O为圆心.每根杆上都套着一个圆环(图中未画出).三

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:50:22
高中物理,牛顿定律,急如图所示,Pa,Pb,Pc是竖直平面内的三根固定的光滑细杆,P,a,b,c,d位于同一圆周上,d点为圆周的最高点,c为圆周的最低点,O为圆心.每根杆上都套着一个圆环(图中未画出).三
xVRF~3h_RN.ݕd܆ȍiWl1N&IDuWY 'i&]g$k|;GJ6_կ.p~i+My>}1K^:$&17IjzC__¼msc] ^c9Ŋ)v]m%Ngv'[oP0ɑ݋2w5={  `K[^"~K;^)h!1 !,,X\-O{CyF;/%Z9[l7]|یid2j!YPS0!;z8j݋5i i>N禳1r ܷa<+<$)(>OYUcӿkq*#aURnI_r-%MI'D@L I&AL]VyA04YDIMQ.Jd`UV57yb`Xc,Hꂦ 1Ji͔$ ZBRnXOeo(LH2!(jBVdhH5dhDI.ICHP P "ŤkDX>M]PH) dѐ"X.ƙݿe}heV3 ylŶTZtpng EXF|fA;0pf0\Y ¤Z_kՆ90PеШ29zVr n2دB=@: |oVW·?AQo0Qu2ha趟pg6Cv2::J$p6EV3a{ =*\CwC"tDD,BX9J?

高中物理,牛顿定律,急如图所示,Pa,Pb,Pc是竖直平面内的三根固定的光滑细杆,P,a,b,c,d位于同一圆周上,d点为圆周的最高点,c为圆周的最低点,O为圆心.每根杆上都套着一个圆环(图中未画出).三
高中物理,牛顿定律,急

如图所示,Pa,Pb,Pc是竖直平面内的三根固定的光滑细杆,P,a,b,c,d位于同一圆周上,d点为圆周的最高点,c为圆周的最低点,O为圆心.每根杆上都套着一个圆环(图中未画出).三个滑环都重都从P点无初速度释放,用t1,t2,t3依次代表滑环到达a,b,c所用的时间,则时间那个大那个小?如何思考?

高中物理,牛顿定律,急如图所示,Pa,Pb,Pc是竖直平面内的三根固定的光滑细杆,P,a,b,c,d位于同一圆周上,d点为圆周的最高点,c为圆周的最低点,O为圆心.每根杆上都套着一个圆环(图中未画出).三

以O点为最高点,取合适的竖直直径oe作等时圆,交ob于b,如图所示,显然o到f、b、g、e才是等时的,比较图示位移oa>of,oc<og,故推得t1>t2>t3,


设杆与竖直方向的夹角为θ,ad长度等于d.滑环从杆上滑下时做匀加速直线运动,通过的位移为:
x=dcosθ
设滑环从杆上滑下时加速度大小为a,根据牛顿第二定律得:
mgcosθ=ma
得:a=gcosθ
由x=1/2at2 得:dcosθ=1/2gcos θt2
得到 t=根号2d/g
可见,t与杆与竖直方向的夹角θ无关,所以tl...

全部展开

设杆与竖直方向的夹角为θ,ad长度等于d.滑环从杆上滑下时做匀加速直线运动,通过的位移为:
x=dcosθ
设滑环从杆上滑下时加速度大小为a,根据牛顿第二定律得:
mgcosθ=ma
得:a=gcosθ
由x=1/2at2 得:dcosθ=1/2gcos θt2
得到 t=根号2d/g
可见,t与杆与竖直方向的夹角θ无关,所以tl=t2=t3.

收起

pc最短pa时间最长 滑环受的加速度a等于g沿杆的分加速度g'分析pc与竖直夹角最小g'最大 而且s 又最短所用时间就最短