Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]求和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 18:49:31
x)γ5035L,3KȎ0qcmlz:&HT`=Pv6CPS 1q`Z:*pZZ`\꧳<ٱU@T+,$dR *JiS m
aaU6TA$A {>eìwZ!ȷ&y'8%: m#0
K4RF@O3+؏# 5`ƷPZ8c
D$-hX Qp
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]求和
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]
求和
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]求和
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]
=1/(2+1)(2-1)+1/(4+1)(4-1)+1/(6+1)(6-1)+.+1/(2n+1)(2n-1)
=1/(3*1)+1/(5*3)+1/(7*5)+.+1/(2n+1)(2n-1)
因为1/(2n+1)(2n-1)=0.5*[1/(2n-1)-1/(2n+1)]
所以
Sn=0.5*[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]
=0.5*[1-1/(2n +1 )]
=n/(2n+1)
Sn的通项:1/[(2n)^2-1]=1/(4n^2-1)=1/(2n+1)(2n-1)
令2n-1=t,2n+1=t+2
1/(2n+1)(2n-1)=1/t(t+2)=(1/2)[1/t-1/(t+2)]
累加:SN=n/(2n+1)
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.....+1/[(2n)^2-1]
=1/2[1-1/3+1/3-1/5+......+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
a1=1,Sn=2an+1求Sn
Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?
2Sn+Sn-1=3-8/2^n,求Sn
求和Sn=1-2 3-4+
设Sn=2+4+6+.+2n,则1/s1+1/s2+.+1/sn=
sn=1+2+4+...+2^(n-1),求sn
an是等差数列,求lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
设Sn=1*4+2*7+.n(3n+1)则Sn=
Sn求和 Sn=1+2x3+3x9+4x27+...+nx3的n-1次方
Sn=1+2+4+...+2的N次方,求Sn
高二数学数列求和问题!在数列an中,a1=1,Sn为an前n项和,an=S(n-1) 求Sn,an请帮我看看我分别先算Sn和an哪里出错了?1.先算Sn因为an=2Sn-1 且an=Sn-Sn-1所以 Sn-Sn-1=2Sn-1Sn=3Sn-1所以Sn是一个等比数列 公比为3 运
Sn+1=2Sn+3^n怎样通过待定系数法转化成等比数列(n、n+1下标)可以这样做吗Sn+1+K=2(Sn+k)、得到Sn+1=2Sn+K、K=3^n
Sn+1=2Sn-3^n设 Sn+1 + t = 2(Sn + t)和 转化成 Sn = 2Sn-1 -3^(n-1) 后再算 t不同是否不能这样化为什么
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
已知Sn是数列an的前n项和,an的通向公式为2n 设Tn=(Sn/Sn+1) +( Sn+1/Sn)-2设数列{an}的前项和为sn,a1=2,点(Sn+1,Sn)在直线(X/n+1)-(y/n)=1(n是正整数,1.求an的通项公式;2 .设Tn=(Sn/Sn+1) +( Sn+1/Sn
正数列{bn}前n项和Sn·且Sn=1/2(bn+n/bn)求Sn
数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn
已知数列an首项a1不等于0,Sn+1=2Sn+a1,求极限(an/sn)