设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:14:49
设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
Sn=n^2+1 S(n-1)=(n-1)^2+1
an=Sn-S(n-1)=2n-1
1/an*a(n+1)=1/(2n-1)(2n+1)=(1/2)[1/(2n-1)-1/(2n+1)]
Pn=1/1*3+1/3*5+...+1/(2n-1)(2n+1)
=(1/2)(1-1/3)+(1/2)(1/3-1/5)+(1/2)[1/(2n-1)-1/(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)
求n求不出的,是求Pn的通项公式吧?
an=Sn-S(n-1)=n^2-(n-1)^2=(n-n+1)(n+n-1)=2n-1(n≥2,n是整数)
an-a(n-1)=2n-2(n-1)=2(n≥2,n是整数)
故当n≥2时,an是等差数列
a1=S1=2,a2=2*2-1=3
Pn=1/6+[1/a2-1/a3+1/a3-1/a4+1/a4-1/a5+……...
全部展开
求n求不出的,是求Pn的通项公式吧?
an=Sn-S(n-1)=n^2-(n-1)^2=(n-n+1)(n+n-1)=2n-1(n≥2,n是整数)
an-a(n-1)=2n-2(n-1)=2(n≥2,n是整数)
故当n≥2时,an是等差数列
a1=S1=2,a2=2*2-1=3
Pn=1/6+[1/a2-1/a3+1/a3-1/a4+1/a4-1/a5+……+1/an-1/a(n+1)]/2
=1/6+[1/a2-1/a(n+1)]/2
=1/6+[1/3-1/(2n+1)]/2
=1/6+1/6-1/(4n+2)
=1/3-1/(4n+2)
故Pn的通项公式为1/3-1/(4n+2)
收起