设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:14:49
设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
xSN1~-x+p$h Qh4Qb8%* > xgʂ xhmf:ugWX|V'=!ÏJ\nQ'%' vђo; Xl_U7㒵!br#Bt]Hd L8@܄]xLAGgtX :aVv]i\g8 ̴#c#w߰\ RqW> I WTUA~9jL3dpKV"ǒH1F찘W: 0XPh FGA9C8~N8>/A"V H*^TA_ʿId<:ș!3XIc"{sw[홼Ew5"߮z

设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?

设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=?
Sn=n^2+1 S(n-1)=(n-1)^2+1
an=Sn-S(n-1)=2n-1
1/an*a(n+1)=1/(2n-1)(2n+1)=(1/2)[1/(2n-1)-1/(2n+1)]
Pn=1/1*3+1/3*5+...+1/(2n-1)(2n+1)
=(1/2)(1-1/3)+(1/2)(1/3-1/5)+(1/2)[1/(2n-1)-1/(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)

求n求不出的,是求Pn的通项公式吧?
an=Sn-S(n-1)=n^2-(n-1)^2=(n-n+1)(n+n-1)=2n-1(n≥2,n是整数)
an-a(n-1)=2n-2(n-1)=2(n≥2,n是整数)
故当n≥2时,an是等差数列
a1=S1=2,a2=2*2-1=3
Pn=1/6+[1/a2-1/a3+1/a3-1/a4+1/a4-1/a5+……...

全部展开

求n求不出的,是求Pn的通项公式吧?
an=Sn-S(n-1)=n^2-(n-1)^2=(n-n+1)(n+n-1)=2n-1(n≥2,n是整数)
an-a(n-1)=2n-2(n-1)=2(n≥2,n是整数)
故当n≥2时,an是等差数列
a1=S1=2,a2=2*2-1=3
Pn=1/6+[1/a2-1/a3+1/a3-1/a4+1/a4-1/a5+……+1/an-1/a(n+1)]/2
=1/6+[1/a2-1/a(n+1)]/2
=1/6+[1/3-1/(2n+1)]/2
=1/6+1/6-1/(4n+2)
=1/3-1/(4n+2)
故Pn的通项公式为1/3-1/(4n+2)

收起

设数列{an}满足Sn=n^2+1,Pn=1/a1.a2+1/a2.a3+.+1/an.an+1,求n=? 已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方,Tn=b1+b2+ 设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式 设正数数列(an)的前n项和Sn满足Sn=1/4(an+1)^2 求 数列(an)的通项公式 已知以1为首项数列{an}满足: an +1(n为奇数) an+1={an/2(n为偶数)}设数列{an}前n项和为sn,求数列{sn}前n项和Tn 高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等比数列 (2)数列{bn}满足bn=1/(2-an),证明:b1+b2+.+bn<1 已知数列{an}满足sn=n/2,sn是{an}的前项和,a2=11.求sn2.设bn=a(n+1)2^n,求数列{bn}的前N和sn=n/2*an 设数列an的前n项和为Sn,满足an+sn=An^2+Bn+1(A不等于0)an为等差数列,求(B-1)/A 已知等比数列{an}满足:a2=4,公比q=2,数列{bn}的前n项和为Sn,且Sn=4/3bn-2/3an+2/3,(1)求通项an,bn.(2)设pn=an/sn(n属于正整数),证明P1+P2+P3+P4+......+Pn<3/2 设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的通项公式 设数列{an}的前n项和为Sn,且3Sn=an+4.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=3Sn,求数列...设数列{an}的前n项和为Sn,且3Sn=an+4.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=3Sn,求数 数列an满足a1=1/3,Sn=n(2n-1)an,求an 数列an满足a1=1/2 a(n+1)=1/2-an (1)求数列an的通向公式 (2)设数列an的前n项为Sn 证明Sn 已知数列{an}满足:a1=3,an=Sn-1+2n,求数列an及sn 已知数列{an}的前n项和Sn=n^2,数列{bn}的前n项积Tn=3^(n^2),数列{Cn}满足cn=an/bn,求数列{cn}的前n项和Pn 设数列{an}的前n项和为Sn,对任意n∈N*满足2Sn=an(an+1),且an≠0 (1)求数列an的通项公式设数列{an}的前n项和为Sn,对任意n∈N*满足2Sn=an(an+1),且an≠0(1)求数列an的通项公式 设{an}是正项数列,其前n项和Sn满足4Sn=(an-1)(an+3) ,则数列{an}的通项公式= __ 已知数列{Sn}的通项公式Sn=n^2-21*n/2(n属于N*),又设数列{an}满足:a1=S1,当n大于等于2时,an=Sn-Sn-1又设数列{an}满足a1=S1,当n≥2时,an=Sn-Sn-1.bn=1/(2n+1)+k,且有bn<an,(m,n∈N*)恒成立,求实数k的取值范围