b^n=2^n,1/[b^n+(-1)^n]=cn Sn=c1+c2+c3+.+cn,求证Sn<3/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:32:17
b^n=2^n,1/[b^n+(-1)^n]=cn Sn=c1+c2+c3+.+cn,求证Sn<3/2
xPn0FjaDr"uRժ+ʖ|N dzqtB:ɧ{{ Jѓ"X_m#Xۧfi dCqǶ^zm>ۗ]enUˢS䉛Vw6eU~S:(paia}9DWh$EtP֗ !Av u?9gAra{?$_

b^n=2^n,1/[b^n+(-1)^n]=cn Sn=c1+c2+c3+.+cn,求证Sn<3/2
b^n=2^n,1/[b^n+(-1)^n]=cn Sn=c1+c2+c3+.+cn,求证Sn<3/2

b^n=2^n,1/[b^n+(-1)^n]=cn Sn=c1+c2+c3+.+cn,求证Sn<3/2
由题知,bn=2^n,1/[bn+(-1)^n]=cn
cn=1/[2^n+(-1^n)]
将Sn中的项一一配对
Sn=(c1+c2)+(c3+c4)+.+cn
令an=(c(2n-1)+c(2n))
则Sn=a1+a2+.+a(n/2)
an=(c(2n-1)+c(2n))
=1/[2^n-1]+1/[2^(n+1)+1]
=[3*2^n]/[(2^n-1)(2^(n+1)+1)]