用反证法证明:根号8+根号7>根号5+根号10

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:12:56
用反证法证明:根号8+根号7>根号5+根号10
xTN@IL Z"ԤҟpOqD &(e(&&&ԄD/i˪Lg@d3sϹ3NŒdaa+Us|9Pa]`KdMǩt$~":Z=ҿ5N c2ucFzg11_H1lTciB :}3& S^Γ`OH1}.Ӗ:) 5At7 ב ?.b%=@cx:Rd>32V_w ߁Yk+J&˥-פY0?Y DƂD\@"6)#,Ca~X(GAI ԸTkĬh1ձs9@9qކg!J$ju͎B=jpCpJ\}8A`m}:ve׃q"oWeNT'-p.Ȃ

用反证法证明:根号8+根号7>根号5+根号10
用反证法证明:根号8+根号7>根号5+根号10

用反证法证明:根号8+根号7>根号5+根号10
证明:
假设√8+√7≤√5+√10,
两边平方得
8+7+2√56小≤5+10+2√50,
即 √56≤√50,
显然不成立,假设不成立,
所以 √8+√7>√5+√10.

假设√8+√7≤√5+√10
则(√8+√7)²≤(√5+√10)²
则8+2√56+7≤5+2√50+10
则√56≤√50
则(√56)²≤(√50)²
则56≤50
矛盾,不成立
所以假设错误
所以
根号8+根号7>根号5+根号10

根号8+根号7 <= 根号5+根号10
==> (根号8+根号7)^2 <= (根号5+根号10)^2
==> 15+2*根号56 <= 15 + 2*根号50
==> 根号56 <= 根号50
==> 56 < 50
a contradiction.
So, 根号8+根号7>根号5+根号10

假设 根号8+根号7<根号5+根号10
那么(根号8+根号7)^2 < (根号5+根号10) ^ 2
15+2*根号56 < 15+2*根号50
得出根号56 < 根号50
这是错误,所以假设不成立,得证。
希望帮到你,有问题联系。

假设√8+√7≤√5+√10,
8+7+2√56小≤5+10+2√50,
√56≤√50,
56≤50
这是错的,所以假设不成立,
所以 √8+√7>√5+√10。