设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得AP=PJ,其中J为约旦标准型矩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:49:21
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得AP=PJ,其中J为约旦标准型矩
xUkO"W+d9 7mH~a"ݱ'U@EkDv ;Og 6mҤ_9yo;}n\u|j1Z^1 ʉUy <ꍲV(kIH&`- T{Bf,~)9[^{ͤ Wvf% ٿqfј7(u>3%SMSo諊󆚧lKuՂbPXbۄj\;37}xS tVzW7#Fyj ߈ks7F2)Z< 46# Fw[mot 0F)ie)!(buyR;#. q/<>&͎/-Eۼ_\Zld -.'oS]_Efaϴ 8<r{8>\OyCA;+vaO=`0󁼧WRQVe鯜oPMh=dafl&{ , &X\/mWH6S􆶘6~L'^DDhSecHLq +XI¡S8Y:kj#(X0M~6/7*&yq%">b@/5 Q B, KhA8ne6i@&[on1sVh~ YvͶKT)Nv21f!OAL9it഍fyD/k4tn=:<*)Fx!| 03F7V j}Ā>ͺ70w^XzJ;y)<~Н=D2 2Zт$b!h"@++Gzu:="Z (ǹ *ťM3LdEmbj_0TemvK;ivvɽT#=,nPUbn%QG MO,,qp37GK8Xğ\VǢ6hʈ'u9 ̂@fK@Z  ]

设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得AP=PJ,其中J为约旦标准型矩
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得
AP=PJ,其中J为约旦标准型矩阵,如何求P?
如题.
约旦标准型J如图
约旦标准型不知道,求一个系统点的求P的方法
如A可以相似对角化的时候,P的列向量由A的特征向量组成,要将A相似对角化,就需要先求特征值,再求对应特征值的特征向量,则这些特征向量按列组成P,与A相似的对角矩阵的对角元就是A的特征值.

设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得AP=PJ,其中J为约旦标准型矩
首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的相乘就得到了最小多项式.例如我们求得初等因子组为x(x-1),(x-1),(x-1)^2,则其最小多项式为x(x-1)(x-1)^2,最小多项式的方幂就是约当块的分块,此题分块为0,1,1(二重),写成约当标准型即可.然后通过AP=PJ把P分成x1,x2,...xn的列向量,然后一列一列的待定系数法可求得x1,x2,...,xn.
某些乘方比较好算或者阶次较小的矩阵可以用广义特征根法,优点是运算量小,可以直接求得约当标准型和变换矩阵P:det(sI-A)求得A的特征值,然后依次带回,分三种情况:si为单根则对应的约当块为1*1,对角线上是si,对应的特征向量为P中对应的列向量(如果约当型中你把这个单根的块放到第一个则对应P中第一列,放到第二个则对应第二列);如果si是n重根,但是可以求得n个特征向量(即sI-A在s=si的时候可以相似对角化),则得到一个n阶块,对角线上是si,这n个特征向量是P对应的列;如果si是n重根,但是只能求得m1(m1