(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 23:43:01
x)060R&Haghm~O=FqF6IE$/!CAPV" u
5ȢP
&K =lx{ӾO+g_\g
O;{_]du!y鄾=߽ ϧxsi;n_u
MpQ$Iw.r===Ae>0tr]d
N\c%X@,]C$ٔm/nG q@
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
2^32 -1 =(2^16+1)(2^16-1)
=(2^16+1)(2^8+1)(2^8-1)
.
=(2^16+1)(2^8+1)(2^4+1)(2^2+1)(2+1)(2-1)
=(2^16+1)(2^8+1)(2^4+1)(2^2+1)(2+1)
所以原式 = -1
先在前面乘以(2-1),然后连续运用平方差公式。
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2²-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2^4-1)(2^4+1)(2^8...
全部展开
先在前面乘以(2-1),然后连续运用平方差公式。
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2²-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2^8-1)(2^8+1)(2^16+1)-2^32
=(2^16-1)(2^16+1)-2^32
=2^32-1-2^32
=-1
收起
1/2,1/4,
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/2009^2),
(2+1)({2}^{2}+1)({2}^{4}+1)({2}^{8}+1).({2}^{64}+1)+1
巧算((2^1+1)(2^2+1)(2^4+1)(2^8+1)+1)/2^15
计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.
[(1+2^-(1/32)]*[(1+2^-(1/16)]*[(1+2^-(1/8)]*[(1+2^-(1/4)]*[(1+2^-(1/2)]
(1-1/2^2)*(1-1/3^2)*(1-1/4^2)*.*(1-1/2002^2)*(1-1/2003^2)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)(1+1/2^16),
1,2,4,4,1,( )
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
(2+1)(2-1)(2^2+1)(2^4+1).(2^8+1)化简
(1+2)*(1+2^2)*(1+2^4)*(1+2^8)*(1+2^16)
化简(1+2)(1+2^2)(1+2^4)(1+2^8)(1+2^16)
化简(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^256+1)
(2-1)(2+1)(2^2+1)(2^4)...(2^64+1)+1=?
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)