设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 01:41:16
设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x
xőJ@_Eln i!! Rm ZzVDQD)i"^fٙo=zOIu`JHfm:* c_`L+s(^ʍ?.6SfFwƆb;Ta-x4 zAo36&uظ*T$((4Kۗ8<_&)>½(ث gb{n2r2|H%7Bgz 'Adp(H,g .#Ul7x\Ҙ5 "?G=Ma "Ȍ 7j܋,PsE;B%Yj$ί f

设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x
设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x

设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x
显然f(0)=0.且f'(0)=lim (f(x)-f(0)/(x-0)=A.对积分做变量替换xt=y,得g(x)=积分(从0到x)f(y)dy/x,x不等于0时.g(0)=0.因此
g'(0)=lim (g(x)-g(0)]/(x-0)=洛必达法则lim f(x)/(2x)=A/2.g'(x)=[xf(x)-积分(从0到x)f(y)dy]/x^2,于是lim g'(x)=洛必达法则lim xf'(x)/(2x)=lim f'(x)/2=A/2=g'(0).综上知g'(x)连续.