求定积分上限0 下限π/2 (e^-x)乘以sin2xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:32:09
求定积分上限0 下限π/2 (e^-x)乘以sin2xdx
xN@_e )!83c)o43i]QWJ(]t-]Q_PىX:6i νgo56wwn?B q_ߏ#vs0Ui=P#ej 2)( SVʩ3 U@T|W=YqYn<2Z6kfI=-pr.UB,E|uI$_7/?a`,k+QdWoز8@έj/ t+zA+* {Ϸiys"Ah4Ҵ4B0fki6:EQׁŲd&`&2MUaA91+<)Y8 ;It BP,n.݇

求定积分上限0 下限π/2 (e^-x)乘以sin2xdx
求定积分上限0 下限π/2 (e^-x)乘以sin2xdx

求定积分上限0 下限π/2 (e^-x)乘以sin2xdx
∫[π/2,0]e^-x * sin2x dx
= (-1/2)∫[π/2,0]e^-x dcos2x
= (1/2)∫[0,π/2]e^-x dcos2x
= (1/2)[e^-x * cos2x] - (1/2)∫[0,π/2]cos2x de^-x
= (1/2)[e^(-π/2) * (-1) - 1] + (1/4)(∫[0,π/2]e^-x dsin2x
= (1/2)[-e^(-π/2)-1] + (1/4)[e^-x * sin2x] + (1/4)∫[0,π/2]e^-x * sin2x dx
= (1/2)[-e^(-π/2)-1] - (1/4)∫[π/2,0]e^-x * sin2x dx
(1+1/4)∫[π/2,0]e^-x * sin2x dx = -(1/2)[e^(-π/2)+1]
∫[π/2,0]e^-x * sin2x dx = -(2/5)[e^(-π/2)+1]

用两次分部积分就可以了

如图所示: