∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:49:55
∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册
xSn@/ e0P͏D rFIЈ*/B[NY c$(]GGssc}]+Sf5|BaBC/1 e"\#gm77ggJ:#"gG"hEG[dʛbBVy΂ox shMj zt_Igmr.r nڤEjMȹf+,2<$}\n*1HzhT.K7B:§M(=3{$/y9Nһ ҋ:,S?z+9"gJH3%œRjd8ς "ڣ"R|f!0"(TqФ`XDyG/c {m [hN =߻%fOh\g)YF6 EMScמ>Ob ,S_c0'"rb?BZ'KO~Lʯ%9E*,Dj>>6ǿa?1kymm?,

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册
∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册
补平面:Σ1:z=0,x^2+y^2≤a^2,下侧,这样原曲面Σ与Σ1共同构成一个封闭曲面
高斯公式:
原式=∫∫∫ (3x^2+3y^2+3z^2)dxdydz
用球坐标
=3∫[0-->2π]∫[0-->π/2]∫[0-->a] r^2*r^2*sinφdrdφdθ
=3∫[0-->2π] dθ∫[0-->π/2]sinφdφ∫[0-->a] r^4dr
=6π*[-cosφ]*1/5*r^5 φ:0-->π/2 r:0-->a
=6π*1*1/5*a^5
=6πa^5/5
下面求平面Σ1上的积分,代入原积分得:
-∫∫ ay^2dxdy 积分区域为:x^2+y^2≤a^2
用一个轮换对称性,由于∫∫ y^2dxdy=∫∫ x^2dxdy
=-a/2∫∫ (x^2+y^2)dxdy
=-a/2∫[0-->2π]∫[0-->a] r^3dxdy
=-πa*1/4*r^4 [0-->a]
=-πa^5/4
最终结果为二者之差,原积分=6πa^5/5+πa^5/4=29/20πa^5

为什么φ的取值范围是0~π/2 ?

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0 ∫∫∑(xz^2+1)dydz+(yx^2+2)dzdx+(zy^2+3)dxdy,其中,∑是锥面z=√x^2+y^2(0 计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x2+y^2(0计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x^2+y^2(0 ∫∫(x^3+z^2)dydz+(y^3+x^2)dzdx+(z^3+y^2)dxdy 积分区域为z=√1-x^2-y^2 的上侧给积分区域加个下边,用奥高公式 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 设∑:z=1-x^2-y^2,取上侧,利用高斯公式计算,I=∫∫(x+y^2)dydz+(x+z)dxdy. ∫∫x^2dydz+y^2dzdx+z^2dxdy,其中曲面为x^2+y^2+z^2=1的上半部分外侧 关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不 计算:I=∫∫(S+)x^3dydz+y^3dzdx+z^3dxdy,其中S+为椭球面x^2/a^2+y^2/b^2+z^2/c^2的外侧 计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧 计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧 封闭∫∫(xz+1)dxdy+(xy+1)dydz+(yz+1)dzdx其中∑是平面x=0 y=0 z=0 以及x+y+z=1所围成的空间区域的边界曲面外侧高斯公式完了以后怎么做 - 还有一题 封闭∫∫∑x^3dydz+(y^3-xz)dzdx+z^3dxdy 其中∑是球面x^2+y^2 曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0 设∑为曲面z=x^2+y^2(z≤1)的上侧,求曲面积分∫∫(x+z^2)dydz-zdxdy诉求 求∫∫x^3dydz,其中∑是椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的x>=0的部分,取椭球面外侧为正侧. 计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1-x^2-y^2的下侧详细过程~~谢谢~~~