4年级奥数题及答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:51:17
4年级奥数题及答案
x\[ScIr+D8a{7dbxc?M@ BӢH4A.Α/*g&l?8*2+3+oUgu|m^Teտz߾w~v"q:|h;oīlgVxhnЇad+_<\qu>o{wXkhKT⓷lûK[O*NT'aeuz5!p) p˷XKƈF {7b}^Ke__&*KL,U5cLaeS+lKd_oz`tFî!0EB`\/,unB U0+ ]ouՀYlWo@qH~GQ^NR4F ]ώ6"jt|fQFdu]{=^=>:zČg6FK˚8uY>Pmr,=cA=hƀ#fPSS[e??z-nMTWKXGqi*{`ݥl"r uz A!9DC[mFzQCl qU5}qy΃S^==`8E]zWRFSx ]7N *e~|xic;}槇gjs&h⣰4$l9F>(g 3XcMUsHذ/ P˂)FLfXv7Kn̏jM\FF;}Is\ ^$"VΑ"N 85:۴ݮת㓎ey/}1+'|<x2Si O *C b,D>L F$gbO*^C>R%^"LpQ̕ ̤Q%piQL&LWx0DP(D2%%Xg`U8Hq"Cy N렋ftBc'_xVkD?,5^22K _(ݸLJZrW0tT&rd jo``ؼVܫˬ*%WA3EDp/용!sOF߱*YnW{Pz2/Y0E<УW`!gahiG4R1=l8yvHZg# NH[bX!zz2[YEq eqVhȎ_; Vn 8(04A?s DFkki:pܪyxΎqAG5?ΊS;u4h<[yE]bL g  Dp,`wfa9⻧.Vb'p`UJi VYc. 0VEj:՜s~z,KjT;EgI!Z.:;%ad(5-ѭ|\ɚL͹f :[0$ hH4RrIz9`FU<ـ!:~n.*] B6 m۬?2(qsorZ6F*}6&TkL8Ed4*̝>L )b1.Ā`7 R|26 Ï+ ηeQ1M5tNEp@U/2Q37 QnFGFǎVK-P% g[XN8gqHV/>oDؗ2xTk&ooo;6o.zH?-`"ܖv]lƥA2Ox;d-UhݻLupSh4mr'[{)B?Y A_2 %/]PF[=f Akcw%ʹy8?VZۼ'sxS2d==jƋ-sKQUw5Jbh2g^I%DnOEuYqg??SB^uÑjN+XJ\kU;Bkw`Rb9GZe61=av9$ _*ҏ% {HiHޜ}t6^9Q~Dzwd 1 =! q'a@dIqlC]`CW}ߌl[-t fq @o eVgMpuO]3 v5 ,ˮx;]7'._!HCx"*v}5lʃ{5>EULֿ~lGh># 3*BA0ea=BUj7JbJx*S8#v 1:~ 2a L| 2e Y|M$#/NJ{Z93:^irړ7iC뎖>zSm.}-\V]^AG;OF BS@ĘbEEߺ: = dlg23ڕLeKK-?{I#MIޛ 9G^RMkd`3PBp]eԎ'7/acE!W>+Lj+o(á%#X#IXFK%>Lk\::bAwuAٍFaPiS$~^/1 0`X2ű]%_kK&:_3)z XJF9%Fw oQ"4BKv%-į!_"Bt4eH;#;PG$2L$dHRV+7>k %s\ Kۊѡ)?hBVuEFXYBԫDg sC(@iъٖYc1w0C [ Lk5C(tZė=ĸG 3 uXx|1MV:EJEHL. Sc5c8/yӯb!]8bg+fȘVCĒxi2D*x[:vaw*Dەn9㲾\W\H1bOǍ C <.,k z*1 AG<ԡA2qRUbT%(Y7¤S ϭPdlJ1z $X UļLCSct_!k!K1GS?)_)ٚ֔د}|CG^hz5A癩[g\ɠ]]\0.olЯ0ס92RDt(ogvI YWYcI .а5fVU>v4|[1.:3^VcxҼ<~y3/{LjdJ_4C:k˽ ƿqg!oƯS{.R<m"4n!B*t8b@Ùe}(XMC 8LNϕsjqi:39!lxhITvAp^ 11٩={;r 7c S2e&AmƮp5ut23cԳ!{]Q*ǒYҥ.TT_.Oӌ=j[pXg]3,xvP4|{)UqXP8YӨ4AӳzA N\rhN*#[F&[+La&мT)"y-!aHy.!SaH'4-$ud){azlv} Vj+8mUd֍ouvmҍ\**7-G,eIֈb6mdS/ 5?fTnQå 9K޻L^ e+U~6b&0|'ȇ5k厼kR/+!jMJ?ާzw+|6O/cSg'{3qI R0Rg rN> :{" ~rV7ׁ mqMre]jB65፧ ֐B>>_L9^kz|H1̟ .W xVge6}hPk q=y*1Ȧ͢Tԇ'Tl'pC+x>_|2x;jz'5<+#KlP`fq2)tƒ_㻐\W:jX"r+-P7ZW>1zRfXv1wqd1ݿveֽdl2fV(uYT{^c*׈! =Vmf\bienݻ[i_'F}/nZ5 [^Vjl^$9s6 c sa^SaeX`hFAʇVmfէ Ԯ+o D2[7N/|RQl '% K0;v6w@*M-?{1oM P# Z=I_^{/I,L^6$"f }!gY!Xpb :s,=@ԮAa9՚xt2;vZr`Yoz $UsL2ퟶ@bE`t)CŧJp WJM6N<匙݃Hw\A3KJT.x7bRPcĮAi>o6Vߜ(NY }w? үq©䳄{mlOW [HC=v$h2#Y`I=^cvP>|#8˕'͒RN=lQ%_z>U|8LBZ>3/ w8ay|y~w]zW?n׍cqi? eeqYs(2UQ>^קݬ lsc>y|dK?ܳ|-utz'j&G9AU}x)+e:~? 6/pSBп$-$ • ˇǁ͘x1 23BzA`,6"ֺ&4\f=h& 9BRk?s.a僳K ^e{Rm\$@ڋKWvQfK}~4cryezUag +xf2I(tbYHhM-:}eQ'eLfпQWU

4年级奥数题及答案
4年级奥数题及答案

4年级奥数题及答案
1,在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了10面.这条道路有多长?
2,在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆.这条走廊长多少米?
3,在一条20米长的绳子上挂气球,从一端起,每隔5米挂一个气球,一共可以挂多少个气球?
4,在一条长32米的公路一侧插彩旗,从起点到终点共插了5面,相邻两面旗之间距离相等,相邻两面旗之间相距多少米?
5,在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等.相邻两把椅子之间相距多少米?
6,有一根木头,要锯成8段,每锯开一段需要2分钟,全部锯完需要多少分钟?
7,一根木料,要锯成4段,每锯开一处要5分钟,全部锯完要多少分钟?
8,一根圆木锯成2米长的小段,一共花了15分钟.已知每锯下一段要3分钟,这根圆木长多少米?
9,小明爬楼梯,每上一层要走12级台阶,一级台阶需走2秒.小明从一楼到四楼共要走多少时间?
10,在一个周长是42米的长方形花园周围,每隔2米放一盆花,一共可放多少盆花?
11,要在一个水池周围种树,已知这个水池周长为245米,计划要栽49棵树,相邻两树之间距离相等.相邻两树之间相距多少米?
12,在一个边长为12米的正方形四周围篱笆,每隔4米打1根木桩,一共要准备多少根木桩?
13、小朋友们植树,先植一棵树,以后每隔3米植一棵,已经植了9棵.问第一棵和第九棵之间相距多少米?
14、在路的一侧插彩旗,每隔5米插一面,从起点到终点一共插了10面.这条道路有多长?
15、在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆,这条走廊有多少米?
16、在一条20米长的绳子上挂气球,从一端起,每隔5米挂一个气球.一共挂了多少个气球?
17、甲、乙两人比赛爬楼梯,甲跑到5楼,乙恰好跑到3楼,照这样计算,甲跑到17楼,乙跑到多少楼?
18、小明和小红两人爬楼梯比赛,小明跑到第4层,小红恰好跑到第5层,照这样计算,小明跑到第16层,小红跑到第几层?
19、两名同学比赛爬楼梯,1号爬到第六层是4,2号爬到第9层,当1号爬到第十一层时,2号应爬到第几层?
20、甲的爬楼速度是乙的2倍,当乙爬到第六层时,甲爬到第几层?
21、把一根钢管锯成小段,一共锯了28分钟,已知每锯开一段需要4分钟,这根钢管锯成了多少段?
22、有一根木料,要锯成4段,每锯开一处需要5分钟,全部锯完需要多少分钟?
23、把一根圆木锯成2米长的小段,一共花了15分钟,已知每锯下一段需要3分钟,这根圆木长多少米?
24、小明爬楼梯,每上一层要走12级台阶,一级台阶需走2秒,小明从一楼走到四楼共要多少时间?
25、有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?
26、在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成十等份,第二种将木棍分成十二等份;第三种将木棍分成十五等份.如果沿每条刻度线将木棍锯开,木棍总共被锯成多少段?
27、大雪后的一天,小明和爸爸共同步测一个圆形花圃的周长.他俩的起点和走的方向完全相同.小明的平均步长54厘米,爸爸平均步长72厘米.由于两人的脚印有重合,并且他们走了一圈后都回到起点,这时雪地上只有留下60个脚印.这个花圃的周长是多少米?
28、 有一高楼,每上一层需2分钟,每下一层需1分30秒.王军于12点20分开始不停地从底层往上走,到了最高层后立即往下走(中途没有停留),13点零2分返回底层,这座高楼一共有多少层?
29、从离林园10.15千米处开始,沿前进方向在马路一旁栽树,每隔50栽一棵柏树.一辆汽车从林园给每个种植点送树,每次只能拉4棵.运完12棵后汽车返回林园,问汽车至少耗油多少千克?(每10千米耗油2千克)
30、 五年级同学把9棵树平均种成了8行,每行都是3棵.他们是怎样种的,请你画图表示出来.
31、 小燕在少年宫猜谜室里发现一个有趣的图形,9盏绿灯纵横交错的排成十行.而且每行都是三盏灯,请画出它的排列方式.
32、在一条长40米的大路两侧栽树,从起点到终点一共栽了22棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离有多少米?
33、在一条长32米的公路一侧插彩旗,从起点到终点一共栽插了5棵,已知相邻两面彩旗之间的距离都相等,问相邻两面彩旗之间的距离有多少米?
34、在公园一条长25米的小路两侧放椅子,从起点到终点等距离放了12把椅子,问相邻两把椅子之间相距有多少米?
35、有一根木料,要锯成8段,每锯开一段需要2分钟,全部锯完需要多少分钟?
35、一条路每隔5米有电线杆一根,连两端共有20根,算一算,这条路有多长?
37、在一条长30米的走廊两边,每隔5米放一盆花,这样一共需要放多少盆花?
38、一个湖泊周围长1800米,沿湖泊周围每隔3米栽一棵柳树,每两棵柳树中间栽一棵桃树,湖泊周围各栽了多少棵柳树和桃树?
39、有三根木料,打算把每根锯成三段,每锯开一处,需用3分钟,全部锯完需要多少时间?
40、有一个挂钟,每小时敲一次钟,几点敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟敲完?
41、有一幢房高17层,相邻两层间都有17个台阶.某人从一层走到十一层,一共要登多少个台阶?
42、某人到十层大楼的第八层办事,不巧停电,电梯停开.如从一层楼走到四层楼需要48秒,请问以同样的速度往上走到八层,还需要多少时间才能到达?
43、一个老人以等速在公路上散步,从第一根电线杆走到第12根电线杆用了12分钟,这个老人用同样的速度走24分钟,应走到第几根电线杆?
44、科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?
45、有一条道路,左边每隔5米种一棵杨树,右边每隔6米种一棵柳树,两端都种上树,共有5处杨树与柳树相对.这条道路长多少米?
1.学校门前有一条直直的小路长32公尺,在小路的一旁每隔4公尺种一棵杨树,头尾一共种多少棵树?
2.教室门前有一个长方形花坛,长4公尺,宽15公尺.在它的四周每隔05公尺种一棵指甲花,四个角各种了一棵,一共种多少棵花?
3.一个正方形花坛四周摆满了鲜花,四个角上也各摆了一盆花.从每一边看去,它都有15盆,花坛周围一共摆了多少盆花?
4.在一条600公尺长的水渠两旁每隔5公尺种一棵水杉,共要种多少棵?
5.一条街道的一旁从一头到另一头共安装了30盏路灯,每相邻两盏路灯之间相距20公尺,这条小街道长多少公尺?
6.学校后边的小河旁种着22棵杨树,每两棵杨树之间相隔6公尺.同学们在这些杨树间每隔1公尺种一棵月季花,一共种了多少棵?
7.把五张15公尺长的彩色纸条贴成一个长长的纸条,每个接头的地方贴15公分,则贴成的纸条全长多少公尺?
8.立达小学五年级64名同学去郊游.他们排成两条纵队,前后两名同学相距1公尺.整个队伍长度为多少公尺?
9.小玲家的“三五”牌时钟在报时时,每隔5秒敲响一下.八点整时,时钟报时一共用了多少秒?
10.在一块池塘周围的大坝上每隔8公尺种柳树一棵,共种了1075棵柳树.现在要在每两棵柳树之间每隔2公尺种一株柏树.种的柏树一共有多少棵?
1回答者: yuanhang7890 - 五级

1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?
12/2*10=60(千克)
7+3=10
60/10*7=42(千克)
60/10*3=18(千克)
答:大桶里有42千克油,
小桶里有18千克油。
2、一桶汽油,桶的重量是油的8%,倒出48千克后,油的重量相当于同...

全部展开

1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?
12/2*10=60(千克)
7+3=10
60/10*7=42(千克)
60/10*3=18(千克)
答:大桶里有42千克油,
小桶里有18千克油。
2、一桶汽油,桶的重量是油的8%,倒出48千克后,油的重量相当于同的二分之一,原有油多少千克?
48/(1-8%*0.5)
=48/96%
=50(千克)
答:原有油50千克。
*=乘号
/=除号
回答者: 叛逆精灵屋 - 魔法学徒 一级 2-4 17:50
查看用户评论(3)>>
评价已经被关闭 目前有 2 个人评价

50% (1) 不好
50% (1)
相关内容
• 六年级 奥数题
• 五年级奥数题目哦
• 帮我算一下这道六年级奥数题。
• 六年级奥数题
• 谁有三年级奥数题目
更多相关问题>>
查看同主题问题:六年级 奥数题
其他回答 共 1 条
中国剩余定理”算理及其应用:(可以让你学会并考别人)
为什么这样解呢?因为70是5和7的公倍数,且除以3余1。21是3和7的公倍数,且除以5余1。15是3和5的公倍数,且除以7余1。(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。
用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。
例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几?
题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,
因为,274>60,所以,274-60×4=34,就是所求的数。
例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?
题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229,
因为,1229>168,所以,1229-168×7=53,就是所求的数。
例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。
题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因为,2499>440,所以,2499-440×5=299,就是所求的数。
例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)
题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因为,1877>315,所以,1877-315×5=302,就是所求的数。
例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)
题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×6+225×2+126×3=2508,
因为,2508>315,所以,2508-315×7=303,就是所求的数。
(例5与例4的除数相同,那么各个余数要乘的“数”也分别相同,所不同的就是最后两步。)
“中国剩余定理”简介:
我国古代数学名著《孙子算经》中,记载这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”用现在的话来说就是:“有一批物品,三个三个地数余二个,五个五个地数余三个,七个七个地数余二个,问这批物品最少有多少个。”这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。
那么,这个问题怎么解呢?明朝数学家程大位把这一解法编成四句歌诀:
三人同行七十(70)稀,
五树梅花廿一(21)枝,
七子团圆正月半(15),
除百零五(105)便得知。
歌诀中每一句话都是一步解法:第一句指除以3的余数用70去乘;第二句指除以5的余数用21去乘;第三句指除以7的余数用15去乘;第四句指上面乘得的三个积相加的和如超过105,就减去105的倍数,就得到答案了。即:
70×2+21×3+15×2-105×2=23
《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但由于题目比较简单,甚至用试猜的方法也能求得,所以尚没有上升到一套完整的计算程序和理论的高度。真正从完整的计算程序和理论上解决这个问题的,是南宋时期的数学家秦九韶。秦九韶于公元1247年写成的《数书九章》一书中提出了一个数学方法“大衍求一术”,系统地论述了一次同余式组解法的基本原理和一般程序。
从《孙子算经》到秦九韶《数书九章》对一次同余式问题的研究成果,在19世纪中期开始受到西方数学界的重视。1852年,英国传教士伟烈亚力向欧洲介绍了《孙子算经》的“物不知数”题和秦九韶的“大衍求一术”;1876年,德国人马蒂生指出,中国的这一解法与西方19世纪高斯《算术探究》中关于一次同余式组的解法完全一致。从此,中国古代数学的这一创造逐渐受到世界学者的瞩目,并在西方数学史著作中正式被称为“中国剩余定理”。
还有一些测试题
六年级奥数测试题
(每道题都要写出详细解答过程)
1. 三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。
2. 已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,问A最小是几?
3. 把自然数依次排成以下数阵:
1,2,4,7,…
3,5,8,…
6,9,…
10,…

现规定横为行,纵为列。求
(1) 第10行第5列排的是哪一个数?
(2) 第5行第10列排的是哪一个数?
(3) 2004排在第几行第几列?
4. 三个质数的乘积恰好等于它们的和的11倍,求这三个质数。
5. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。
6. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4根彩旗没动,问现在的彩旗间隔多少米?
7. 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?
8. 求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少个?
9. 有一列数:1,999,998,1,997,996,1,…从第3个数起,每一个数都是它前面2个数中大数减小数的差。求从第1个数起到999个数这999个数之和。
10. 从200到1800的自然数中有奇数个约数的数有多少个?
11. 在下图中,有左右两个一样的等腰直角三角形,其面积都是100,分别沿着图中的虚线剪下两个小正方形,请你求一下两个正方形的面积各是多少,并比较大小。
12. 甲说:“我和乙、丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们三人仍有钱100元。”丙说:“我的钱连30元都不到。”问三人原来各有多少钱?
13. B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
14. 一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?
15. 把1296分为甲、乙、丙、丁四个数,如果甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。求这四个数各是多少?
你能做多少就做多少

收起

2张桌子相当于8张椅子,则13张椅子195元,椅子15元一张,桌子60元一张
选我最佳吧