如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:43:27
如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥
x){ټ9:I/>8ɮgk?]7 :/z옒iki1|ViOi~:{˳N]jTO= l{:u 2 [#)&'>nhԁYgÓ@v:I` ,d?ٱ b DPݓ}I ظ[̂zazepYBu6ŏ:lΧ7Lㆉpw= 44 Hyv0N

如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥
如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥

如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥
(a-1)(b-1)=2
由于a、b都是正实数,所以
a-1>-1,b-1>-1
乘积为2
所以,a-1与b-1不能是负数,
于是a-1与b-1是正数,
所以:
(a-1)+(b-1)≥2·根号【(a-1)(b-1)】=2·根号2
即:a+b≥2+2·根号2