关于一元二次方程的- -已知关于x的方程 x²+2x-a+1=0没有实数根,试判断关于x的方程 x²+ax+a=1是否一定有两个不相等的实数根 并说明理由

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:52:44
关于一元二次方程的- -已知关于x的方程 x²+2x-a+1=0没有实数根,试判断关于x的方程 x²+ax+a=1是否一定有两个不相等的实数根 并说明理由
xRN@&&G+mDm?dpon$LD0Q-6~ Lq/8)  {0I>qzjޟpn)F%c a{g/*j tkT|FuwPoRk%hQ܁;bޮ`l:cfݪ25d:Q9N9~[3;b Uc"qk~$I@8)"DBV$ ǎPc Ryq1 ̘:!LC䶓dgȡi n &wa 8"JA{Q<),ֱ0Π4_ lAG_pukYF#}s5g1RO&8yv F ׉$I*,.|ٹ)O\_!t

关于一元二次方程的- -已知关于x的方程 x²+2x-a+1=0没有实数根,试判断关于x的方程 x²+ax+a=1是否一定有两个不相等的实数根 并说明理由
关于一元二次方程的- -
已知关于x的方程 x²+2x-a+1=0没有实数根,试判断关于x的方程 x²+ax+a=1是否一定有两个不相等的实数根 并说明理由

关于一元二次方程的- -已知关于x的方程 x²+2x-a+1=0没有实数根,试判断关于x的方程 x²+ax+a=1是否一定有两个不相等的实数根 并说明理由
是一定有两个不等的实数根.
关于x的方程 x²+2x-a+1=0没有实数根,
所以b^2-4ac=4-4*1*(-a+1)=4a

由题意得,4-4(-a+1)<0化简得a<0
方程x2+ax+a=1的根的判别式为
a2-4(a-1)=a2-4a+4
=(a-2)2
因为a不等于2,所以(a-2)2>0
即得方程有两个不相等的实根

∵原方程没有实数根
∴△=b²-4ac=4-4(1-a)<0,
∴a<0
则断关于x的方程 x²+ax+a=1的△=a²-4a
∵a²>0,-4a>0(a<0),
∴△>0,
∴关于x的方程:x²+ax+a=1一定有两个不相等的实数根