等差数列{An}中,若A1004+A1005+A1006+A1007+A1008=10,则S2011=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:52:44
等差数列{An}中,若A1004+A1005+A1006+A1007+A1008=10,则S2011=?
xAJ@dHlL$g!jvUjԅB\F̌q+8Ag{〽>!#"v"㸞EfMـlbC3rt,;R&58b4Ž_,J*v5j. aUC]9PTJMڂ[8͚{%9\),Ո '4=aQFߺGO$~A1srcȰ%΃6}ؔÄAe7Zq 

等差数列{An}中,若A1004+A1005+A1006+A1007+A1008=10,则S2011=?
等差数列{An}中,若A1004+A1005+A1006+A1007+A1008=10,则S2011=?

等差数列{An}中,若A1004+A1005+A1006+A1007+A1008=10,则S2011=?
A1004+A1005+A1006+A1007+A1008=10
数列An为等差数列,则:
A1004+A1008=A1005+A1007=2A1006
即5A1006=10
A1006=2
而A1+A2011=2A1006=4
S2011=2011(A1+A2011)/2=4022

等差数列中有:A1004+A1008=A1005+A1007=2A1006
A1004+A1005+A1006+A1007+A1008=10
故有:A1006=10/5=2
故S2011=(A1+A2011)*2011/2=2A1006*2011/2=2*2011=4022

由于好久没做过数学题了,我暂时只能求到a2012=2所以很抱歉