help~应用题2道~高数1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?(答案是a/6,我咋解不出这数呀?)2.欲做

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 20:35:44
help~应用题2道~高数1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?(答案是a/6,我咋解不出这数呀?)2.欲做
xVNG~*E6"aӷ%VTRUZn@n1c0N!;;+^M\VJ[_X3swΜv?iOIk8o)-NGKia/FKKL7__jg-9dNV!"~Lj={gA¶R ER[i:́$wgʇdbnXΡh $.%n? (Z#4n\aRGZ$%&f>2B8s`MC,xNi)X#Ff怐Xl2(bK30|1p3UFc|Afj.5ĞW8x$x37!gT4>HDh)_P ~YaVJc(zb>Vz_ jPqB3|r6]Z<=Q}DVHt /5&y`_,[M\ZN'/cG݂$22aSP8!8/U[$z:8g ÷5,zt/埾KԍNJ\eJ{f7D.#CqN]oKjuFpQ׃<~1nn4ND,xIjeRZ\=L%~샷& +dW wmCJ7ΜC꼆

help~应用题2道~高数1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?(答案是a/6,我咋解不出这数呀?)2.欲做
help~应用题2道~高数
1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?(答案是a/6,我咋解不出这数呀?)
2.欲做一个容积为300立方米的无盖圆柱形蓄水池,已知池底单位造价为周围造价的两倍,问蓄水的尺寸怎样设计才能使总造价最低?(答案:底半径为立方√(150/π)米,高为2立方√(150/π)米)

help~应用题2道~高数1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?(答案是a/6,我咋解不出这数呀?)2.欲做
1.设有一块边长为a的正方形铁皮,从其各角截去相同大小的小正方形,做成一个无盖的方匣,问截去多少,才能使做成的匣子的容积最大?
设:被截去的小正方形的边长是 x,
小正方形被截去后剩余的宽度是 (a - 2x)
小正方形被截去后形成的匣子的体积是 V=(a - 2x)²x
V = a²x - 4ax² + 4x³
dV/dx = a² - 8ax + 12x² = (a - 6x)(a - 2x)
令 dV/dx = 0,得:x₁= a/6; x₂= a/2 (不合理,舍去)
d²V/dx²= -8a + 24x
当x=a/6时,d²V/dx²= -8a + 4a = -4a < 0
∴ 极值点是最大值极值点.Vmax=2a³/27
2.欲做一个容积为300立方米的无盖圆柱形蓄水池,已知池底单位造价为周围造价的两倍,问蓄水的尺寸怎样设计才能使总造价最低?
设:池底每平方单位的造价为2p,周围的单位造价为p;总造价为y.
池底的半径是r,则池高为:h = 300/πr²
y = πr²(2p) + 2πrhp
= πr²(2p) + 2πr(300/πr²)p
= 2πpr² + 600p/r
dy/dr = 4πpr - 600p/r²
令 dy/dr = 0
∴ 4πr³ = 600,r = (150/π)^(⅓),
h = 300/[π(150/π)^(⅔)]
= 2×(150/π)^(⅓)
∵d²y/dr² = 4πp + 1200p/r³ > 0
∴当 r = (150/π)^(⅓),h = 2×(150/π)^(⅓) 时,造价最低.
y(min) = 2πp(150/π)^(⅔) + 600p/[(150/π)^(⅓)]
= 2p[150^(⅔)π^(⅓)+2×150^(⅔)π^(⅓)]

1.设截去的小正方形的边长为x,则有:
无盖的匣子的底面积是:(a-2x)^2,高为x
体积是:(a-2x)^2*x
体积函数的导数是(a-2x)^2+x*2(a-2x)*(-2)
这个导数为0,那么体积可以达极值。
(a-2x)^2+x*2(a-2x)*2=0的解是x=a/2或者a/6
x=a/2时是最小值,x=a/6时是最大值

全部展开

1.设截去的小正方形的边长为x,则有:
无盖的匣子的底面积是:(a-2x)^2,高为x
体积是:(a-2x)^2*x
体积函数的导数是(a-2x)^2+x*2(a-2x)*(-2)
这个导数为0,那么体积可以达极值。
(a-2x)^2+x*2(a-2x)*2=0的解是x=a/2或者a/6
x=a/2时是最小值,x=a/6时是最大值
2.设底半径为r,则有:
300/(πr^2)为高
周边面积为2πr*300/(πr^2)=600/(r)
也就是求2*πr^2+600/(r)的最小值
这个函数的导数是:4πr-600/(r^2)
等于0时有极值,4πr-600/(r^2)=0的r=(150/π)^(1/3)
高有前面的算式可得

收起