已知a是实数,函数f(x)=x^2(x-a),若f'(1)=3,求曲线y=f(x)在点(1,f(1))处的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:43:32
已知a是实数,函数f(x)=x^2(x-a),若f'(1)=3,求曲线y=f(x)在点(1,f(1))处的切线方程
xQN@O&E,=)&IU"(RAZ5&tv멿l[HziޛyoF-`.]wAOX H%A5E2=fiIh߳ KyEak?.Iern@:bq F@jd3b  %J\GJF7ay>eVt|5(G=Q0f:b$)8aY\TC{l 5FR]Vł\+LN̚{OaV)MxPqk+-HC;jB_NPF($:ivg׷`8qq7ޅr`ۉhx370[tog]:PׁLl3ۀl'Re

已知a是实数,函数f(x)=x^2(x-a),若f'(1)=3,求曲线y=f(x)在点(1,f(1))处的切线方程
已知a是实数,函数f(x)=x^2(x-a),若f'(1)=3,求曲线y=f(x)在点(1,f(1))处的切线方程

已知a是实数,函数f(x)=x^2(x-a),若f'(1)=3,求曲线y=f(x)在点(1,f(1))处的切线方程
∵f(x)=x²(x-a)=x³-ax²
∴f'(x)=3x²-2ax
∴f'(1)=3-2a
∵f'(1)=3
∴a=0
∴f(1)=1
又∵切线斜率k=f'(1)=3
∴切线方程:y-1=3(x-1) (点斜式)
答:切线方程为y=3x-2.

求得f'(x)=3x^2-2ax,已知f'(1)=3,代入求a=0,则f(1)=1,所求切线方程过点(1,1)且斜率为3,这样你自己应该会求了吧,做这样的题的时候把思路理清楚就很简单了哦!