求球面:x^2+y^2+z^2=a^2含在圆柱面x^2+y^2=ax内部的那部分面积.由于对称可以看成在XOY的投影y>0,x^2+y^2=ax则面积A=4a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为0到π/2,r取值为0到acosθ),为什么把他看成其投
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:43:31
求球面:x^2+y^2+z^2=a^2含在圆柱面x^2+y^2=ax内部的那部分面积.由于对称可以看成在XOY的投影y>0,x^2+y^2=ax则面积A=4a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为0到π/2,r取值为0到acosθ),为什么把他看成其投
求球面:x^2+y^2+z^2=a^2含在圆柱面x^2+y^2=ax内部的那部分面积.由于对称可以看成在XOY的投
影y>0,x^2+y^2=ax则面积A=4a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为0到π/2,r取值为0到acosθ),为什么把他看成其投影式在xoy面上的整个x^2+y^2=ax,其面积为 A=2a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为-π/2到π/2,r取值为0到acosθ),算出答案不一样?这么看有错吗?
求球面:x^2+y^2+z^2=a^2含在圆柱面x^2+y^2=ax内部的那部分面积.由于对称可以看成在XOY的投影y>0,x^2+y^2=ax则面积A=4a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为0到π/2,r取值为0到acosθ),为什么把他看成其投
面积A=4a∫dθ∫[1/[(a^2-r^2)]^1/2dr其中(θ取值为0到π/2,r取值为0到acosθ)中应该是A=4a∫dθ∫[1/[(a^2-r^2)]^1/2*rdr,下面其中A=2a∫dθ∫[1/[(a^2-r^2)]^1/2dr(θ取值为-π/2到π/2,r取值为0到acosθ),也是A=2a∫dθ∫[1/[(a^2-r^2)]^1/2rdr
你犯的错误是化为极坐标时应该dxdy=rdrdθ,r一定不能漏了