求微分方程y"+3'-4y=5e^x的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:42:48
求微分方程y
xn@_% *\.l[DIcYU[*M%,( )MQ!O;W`'T,39o~9;Q/OGAZˊ6w/I'Gv#=+k)}v?dwyN6IWuoEӘZuj^UF]jֵ'Uס5qu &m\ +P0ae,KAQ S;gUS1ہ8 b9d2 z(Xtc̒p!fe-a602!Y_s

求微分方程y"+3'-4y=5e^x的通解
求微分方程y"+3'-4y=5e^x的通解

求微分方程y"+3'-4y=5e^x的通解
(1)y"+3y'-4y=0的特征方程为:λ²+3λ-4=0则(λ+4)(λ-1)=0,所以λ=1,λ=-4.y"+3y'-4y=0的通解为:y=C1e^x+C2e^(-x),(C1,C2为任意常数)(2)因1是特征根,所以设原方程的特解为y*=axe^x.则y*'=ae^x+(ax)e^x,且y*"=2ae^x+(ax)e^x.代入原方程,则[2ae^x+(ax)e^x]+3[ae^x+(ax)e^x]-4[(ax)e^x]=5e^x,即 (2a+3a)e^x+(a+3a-4a)xe^x=5e^x得5ae^x=5e^x,所以a=1所以y*=xe^x.故原方程的解为:y==C1e^x+C2e^(-x)+xe^x.(C1,C2为任意常数)----------------------------------------------------------------------(代入原方程验证,正确.)

解答如下: