若关于X的方程x^2-ax+a^2-4=0至少有一个正根,求常数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:15:37
若关于X的方程x^2-ax+a^2-4=0至少有一个正根,求常数a的取值范围
xn@_%+;v`9`SiXD )N6hSHImi(iqK%3 $J ;6co){IjCmg=ݦD (~<B逿| awA 8Yyfs?Q`ExWkv:;R0ǎ7o;w6/M.LiHylԏ Ve7|$HVXy,:> hfe])&4[5L A6mK1icb3yƟCeij'# d12@^ Z'ɇߝ8r>fRKPIirͦɒ1+ܑ|6g%KensJ2' R.׬jא]"9<6FA\lmƾх<FԱH0A{Y`Wς!zʒ3s!İ.Ң[69KN?_|Y

若关于X的方程x^2-ax+a^2-4=0至少有一个正根,求常数a的取值范围
若关于X的方程x^2-ax+a^2-4=0至少有一个正根,求常数a的取值范围

若关于X的方程x^2-ax+a^2-4=0至少有一个正根,求常数a的取值范围
关于X的方程x^2-ax+a^2-4=0至少有一个正根,分二种情况:
1)二根非负时:
⊿=a²-4(a^2-4)≥0 (1)
对称轴x=a/2>0 (2)
与Y轴交点非下方f(0)=a^2-4≥0 (3)
由(1)-4√3/30
(3)a≥2,或a≤-2
得 2≤a≤4√3/3
2)二根一正一负时:
只要f(0)=a^2-4

x^2-ax+a^2-4=0至少有一个正根,则
1:△=a^2-4(a^2-4)≥0
3a^2≤16
-4√3/32:x1+x2=a
x1*x2=a^2-4≥0
a≥2或者a≤-2
3:y=x^2-ax+a^2-4=(x-a/2)^2+3a^3/4-4是开口向上的抛物线,对称轴为x=a/2
当a<0时,只要x=0,...

全部展开

x^2-ax+a^2-4=0至少有一个正根,则
1:△=a^2-4(a^2-4)≥0
3a^2≤16
-4√3/32:x1+x2=a
x1*x2=a^2-4≥0
a≥2或者a≤-2
3:y=x^2-ax+a^2-4=(x-a/2)^2+3a^3/4-4是开口向上的抛物线,对称轴为x=a/2
当a<0时,只要x=0,y=a^2-4>0即可
a<-2
综合得:-4√3/3

收起