f(x)=sin(2x+π/3)=f(0)在(0,2π)成立的x的集合为______答案为{π,7π/6,π/6}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:13:07
f(x)=sin(2x+π/3)=f(0)在(0,2π)成立的x的集合为______答案为{π,7π/6,π/6}
xRJ@RZ,v2Gj⣍bQ.D w o?_p2 "ro3g SB'Q;."EQ%<'`||>?3=\e˝aݴݚ@26?^n w†v|>vFijЃUfDK1 ?ݙO+qV'k;˺UӚa A5S:8c:4:]r-*O?E v;C(,Qڭ,x6˲H g %RӯV@HZn T "W(G \ѨWʫ*1q\5H&"G˱*KeY$&Xz@^_fѿ %1oֳa7K[

f(x)=sin(2x+π/3)=f(0)在(0,2π)成立的x的集合为______答案为{π,7π/6,π/6}
f(x)=sin(2x+π/3)=f(0)在(0,2π)成立的x的集合为______
答案为{π,7π/6,π/6}

f(x)=sin(2x+π/3)=f(0)在(0,2π)成立的x的集合为______答案为{π,7π/6,π/6}
f(0)=sin(0+π/3)=√3/2
sin(2x+π/3)=√3/2
∵x∈(0,2π)
∴2x+π/3∈(π/3,13π/3)
于是
2x+π/3=2π/3或7π/3或8π/3
2x=π/3或2π或7π/3
x=π/6或π或7π/6
即x的集合为{π/6,π,7π/6}