换底公式的详细证明?对数函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:31:59
换底公式的详细证明?对数函数
xRN@YR`Fnn h!QPV+~Kg(%ֈk7s=t2wr641a`zU^>[dQ۵UZ(mB+Fy*n0yyw0B]T"!a:WoUy78Hfm̊Yw&,>q:`|]P {O& Ma9]"zDS5,iODĔȵD4"L$ˁޞ;8^[%/ڂibR[,hNj1`%`psqt.t:4}xiS؝Wkt|x%?L%Ŀr'u %b*WhE*F*h|i6kh3j2}dO

换底公式的详细证明?对数函数
换底公式的详细证明?对数函数

换底公式的详细证明?对数函数
令y=log(b)a
则a=b^y
两边取以c为底的对数
log(c)a=log(c)b^y=ylog(c)b
所以y=log(b)a=log(c)a/log(c)b

设N=logab(表示以a为底b的对数)
b=a^N
lnb=Nlna
N=lnb/lna=logab

换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]...

全部展开

换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] 所以log(a)(N)=log(b)(N) / log(b)(a)

收起

loa(a,b)=x,
a^x=b,
log(m,a^x)=log(a,b),
xlog(m,a)=log(a,b),
x=loa(a,b)=log(a,b)/log(m,a).