解方程:(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:31:27
解方程:(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84
xRJ1 f)rP*>хVEQE?F&Ӻ4Z Msɹ7lTgY7l,\H,bہa; X8M5*VW&;5 +(1pFvvT 3c݀*8 Ur;-LM&هrdTwDUe_4a⾮yuDeuE*) A[lWG5["7[$;\L\

解方程:(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84
解方程:(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84

解方程:(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84
(19x-x^2)/(x+1)*(x+(19-x)/(x+1))=84
[(19x-x^2)/(x+1)]*[(x^2+19)/(x+1)]=84
84(x+1)^2+(x^2+19)(x^2-19x)=0
x^4-19x^2*(x-1)+84x^2-193x+84=0
x^4-x^2*(19x-19)+(7x-12)(12x-7)=0
(x^2-7x+12)(x^2-12x+7)=0
(x-3)(x-4)(x^2-12x+7)=0
解得x1=3 x2=4
x3=[12+√(12^2-4*7)]/2=6+√29
x4=[12-√(12^2-4*7)]/2=6-√29

方程化简有:
X(19-X)/(X+1)*(X^2+19)/(X+1)=84
X(19-X)(X^2+19)-84*(X+1)^2=0
观察知X有一个根为3,将上面式子展开有
X^4-19X^3+19X^2-19*19X+84X^2+168X+84=0
X^4-19X^3+103X^2-193X+84=0
(X-3)(X^3-16X^2+55X-28...

全部展开

方程化简有:
X(19-X)/(X+1)*(X^2+19)/(X+1)=84
X(19-X)(X^2+19)-84*(X+1)^2=0
观察知X有一个根为3,将上面式子展开有
X^4-19X^3+19X^2-19*19X+84X^2+168X+84=0
X^4-19X^3+103X^2-193X+84=0
(X-3)(X^3-16X^2+55X-28)=0
X1=3或者X^3-16X^2+55X-28=0即(X-4)(X^2-12X+7)=0
所以X1=3,X2=4,X3=6+29^1/2,X4=6-19^1/2

收起

X1=3,X2=4,X3=6+29^1/2,X4=6-19^1/2