椭圆的离心率的三角函数表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:45:53
椭圆的离心率的三角函数表示
x=O@ƿʍ%Nnr:2w7H\jcWSIKM|M_HŁT/&~>Dql~kMt\r'WKN zLog9CykՒ7]oSKe_x\NDFa8EI' guY!fH8x$敞.u4^O8T@ǙkrbB%Ƚ#.iL/mf`vX۩C X"zRQB ZW@xOZu[Qʗr`"~ Bi|Z6֠qn-교,,wJaVJ MC

椭圆的离心率的三角函数表示
椭圆的离心率的三角函数表示

椭圆的离心率的三角函数表示
设椭圆的两焦点是F1,F2.点P是椭圆上任意一点.
∠PF1F2=β,∠PF2F1=α,
则|F1F2|=2c,|PF1|+|PF2|=2a,
在三角形PF1F2中利用正弦定理得:
|PF2|/sinβ= |PF1|/sinα=|F1F2|/sin(180°-α-β)
即|PF2|/sinβ= |PF1|/ =|F1F2|/sin(α+β)
由等比定理得:(|PF1|+|PF2|)/( sinα+sinβ) =|F1F2|/sin(α+β)
2a/( sinα+sinβ) =2c/sin(α+β)
∴离心率e=c/a= sin(α+β) /( sinα+sinβ)
=2sin((α+β)/2)cos((α+β)/2)/[2sin((α+β)/2)cos((α-β)/2)]
= cos((α+β)/2)/ cos((α-β)/2).