已知y^2=4a(x-a)(a>0),求u=(x-3)^2+y^2的最小值.不懂求出函数y的定义域x≥a的作用 和当a≥1和0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:26:04
已知y^2=4a(x-a)(a>0),求u=(x-3)^2+y^2的最小值.不懂求出函数y的定义域x≥a的作用 和当a≥1和0
xRN@Ӧ@!#D ј ;$*Hш0 4sۺW&p5s9sϝ3jt#+HeuL̨eð TbJh@Ѵφ9CI:t:һl9` F6 ;7pVKוSny)ؠpDc1t$_B9F%o{ 4 AEXUH:]84V"qzռOj)"%(q/Q,l_dbV}Snc֙L,S秩2oTF^v㙇CFdڟ3L?un{BL sxkO+ E E8_L

已知y^2=4a(x-a)(a>0),求u=(x-3)^2+y^2的最小值.不懂求出函数y的定义域x≥a的作用 和当a≥1和0
已知y^2=4a(x-a)(a>0),求u=(x-3)^2+y^2的最小值.
不懂求出函数y的定义域x≥a的作用 和当a≥1和0

已知y^2=4a(x-a)(a>0),求u=(x-3)^2+y^2的最小值.不懂求出函数y的定义域x≥a的作用 和当a≥1和0
∵y²≥0,
∴y^2=4a(x-a)≥0
∵a>0
∴x-a≥0
∴x≥a
∴u=(x-3)^2+y^2
=(x-3)²+4a(x-a)
=x²-(6-4a)x+9-4a²
=[x-(3-2a)]²-(3-2a)²+9-4a²
=[x-(3-2a)]²+12a-8a²
这是关于x的二次函数,但x≥0
要讨论对称轴3-2a与a的关系.
当3-2a≤a即a≥1时,
函数在[a,+∞)上递增
x=a时,取得最小值(a-3)²
当3-2a>a即0