三次方程有三个不同的根的条件是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:06:53
三次方程有三个不同的根的条件是什么?
xTN@~=uxrA6}rBr@ !HB(RZ-jp~7CgMNyQ =Xi]-7{.2ޱRm

三次方程有三个不同的根的条件是什么?
三次方程有三个不同的根的条件是什么?

三次方程有三个不同的根的条件是什么?
aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)的方程是一元三次方程的标准型.
特殊型一元三次方程X^3+pX+q=0 (p、q∈R)   
判别式Δ=(q/2)^2+(p/3)^3
当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根.

抛物线离心率是1 那么1是方程的一个根 1 a 2 b=0 a b=-3 根据题意根据一元二次方程根的分布,可得关于实系数a,b的约束条件: f(0)*f(

抛物线离心率是1 那么1是方程的一个根 1+a+2+b=0 a+b=-3 依据题意知,方程的两外两根一个大于1一个小于1 x^3+ax^2+2x+b=(x-1)(x^2+mx+n) (x-1)(x^2+mx+n)=x^3+(m-1)x^2+(n-m)x-n m-1=a n-m=2 -n=b 所以 m=n-2=-b-2=a+1 n=-b=a+3 构造函数 f(x)=x^2+mx+n 即 f(x)=x...

全部展开

抛物线离心率是1 那么1是方程的一个根 1+a+2+b=0 a+b=-3 依据题意知,方程的两外两根一个大于1一个小于1 x^3+ax^2+2x+b=(x-1)(x^2+mx+n) (x-1)(x^2+mx+n)=x^3+(m-1)x^2+(n-m)x-n m-1=a n-m=2 -n=b 所以 m=n-2=-b-2=a+1 n=-b=a+3 构造函数 f(x)=x^2+mx+n 即 f(x)=x^2+(a+1)x+a+3 依题意f(x)=0的两个根x1,x2区分作为椭圆和双曲线的离心率故 02011-10-24 11:30:21

收起

极大值大于0,极小值小于0