求有理函数的积分:S dx/[(x^2+1)(x^2+x+1)] 请给出必要的步骤

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:26:07
求有理函数的积分:S dx/[(x^2+1)(x^2+x+1)] 请给出必要的步骤
xRN@~mt RNGQUQ1JpQZZB-6J» s:);̬-_jtux-D4ݏz/A+:YŦcC^KK>kzUNC=j*ǟ0 K]]%8Λx-'oA{Q?jaF4aLKPa@ nVtA.:Of3:rXHL_2g fJh2(U4J16g,ƾY L!AoIʞ ]F g#({!AJO)BGX1EW,j[ps_PZ`sl|oed؟ 1c5ArUn.]Y$qOY+k4&_w^&nr $>LQw>AmZk/W u s7

求有理函数的积分:S dx/[(x^2+1)(x^2+x+1)] 请给出必要的步骤
求有理函数的积分:S dx/[(x^2+1)(x^2+x+1)] 请给出必要的步骤

求有理函数的积分:S dx/[(x^2+1)(x^2+x+1)] 请给出必要的步骤
设 f(x)=x^2-x∫f(x)dx [1,2]+2∫f(x)dx [0,1],求f(x)?
∫f(x)dx [1,2]和∫f(x)dx [0,1]是常数,f(x)是2次函数,可用待定系数法.
设:f(x)=ax^2+bx+c
记:g(x)=∫f(x)dx=ax^3/3+bx^2/2+cx+d
则:g(2)=8a/3+4b/2+2c+d;g(1)=a/3+b/2+c+d;g(0)=d;
g(2)-g(1)=7a/3+3b/2+c
g(1)-g(0)=a/3+b/2+c
f(x)=x^2-x∫f(x)dx [1,2]+2∫f(x)dx [0,1]
等价:ax^2+bx+c=x^2-(7a/3+3b/2+c)x+2(a/3+b/2+c)
对比系数得:
a=1
b=-(7a/3+3b/2+c)
c=2(a/3+b/2+c)
解得:a=1,b=-10/9,c=4/9
所以:f(x)=x^2-10x/9+4/9

不知道我又没有把题目看错了!
把两个算式展开来,再根据性质来积!