已知函数f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,且在[0,π/2]上是单调函数,求w和φ的值.这道题费了我好长时间,好的追加分.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:27:25
已知函数f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,且在[0,π/2]上是单调函数,求w和φ的值.这道题费了我好长时间,好的追加分.
xWNF~^% ZERE&8Y`]6K.!,$#c+^؎@ [UU/̜9se:ղBcay!e,^ӗ\ )q6]jgُik٘^a*]?:|4rDm5#%`CM{g_2t2 H |%gc&jeU#朮^/\l8y-.N僋庄)R-~OLgMqM ca;%βy6zcZrNb+5i7j贶D ,Cmg7FH&[nB"sd]11x^މⰻWqs7J+h%VH"f)ՆTXȕ`>3Mi֋f㈅q5}"wY k٘:JƄX鍏|ϭ^>}IWQ/G; Ӵ%<-$(J(c?W#Ixs5\+r /_AS񴥽NuKx|:&_X&] wyG;,E\3;lx@?W'|DFp䑽 =7IJHA̯[+ pnaܻazqMk~lL;;ĔOzQaP()'e4t. A4 ,,-o,]f#%&/J#K";H]e{qz ;x:&4`'Oa?gw]QҽƆ{k2C SS$P]@qݫ@Qx{im" +kB;dO_׺f2~qxyIטGb~ZځD .oZ&ԑ̪![UDCOn%]n!'4Q| YjUtʮ̲eK M_N27._ӌ_;4#iv~D &+hm jTg]+y=Zteb6TkmN)4zXGvWn^`jݛztǹP43i W >f)H-cX`Bg!ODNJ}f#zkfp֗^98z٩y~BjZu3?ӉHd 8\@71S7|vC(0pZDl*kٮ~N/

已知函数f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,且在[0,π/2]上是单调函数,求w和φ的值.这道题费了我好长时间,好的追加分.
已知函数f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,且在[0,π/2]上是单调函数,求w和φ的值.
这道题费了我好长时间,好的追加分.

已知函数f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,且在[0,π/2]上是单调函数,求w和φ的值.这道题费了我好长时间,好的追加分.
f(x)是偶函数,所以f(x) = f(-x),即sin(wx + φ) = sin(-wx + φ),两边用正弦公式展开得sinwx cosφ + coswx sinφ = -sinwx cosφ + coswx sinφ,所以cosφ = 0,而0≤φ≤π,所以φ = π/2
所以f(x) = sin(wx + π/2)
f(3π/4) = 0,即sin((3w/4 + 1/2)π) = 0,所以((3w/4 + 1/2)π) = kπ(k是整数),w = (4k-2)/3.
因为f(x)在[0,π/2]上单调,所以f(x)的周期不小于π.所以w

sin(wx+φ)=sin(-wx+φ)==>sinwxcosφ+coswxsinφ=sinφcoswx-sinwxcosφ
sinwxcosφ=0 cosφ=0 , 又0≤φ≤π ∴ φ=π/2 , 此时 f(x)=coswx
由图像关于点M(3π/4,0)对称可得:w*3π/4=kπ+π/2 ,w=(4k+2)/3...

全部展开

sin(wx+φ)=sin(-wx+φ)==>sinwxcosφ+coswxsinφ=sinφcoswx-sinwxcosφ
sinwxcosφ=0 cosφ=0 , 又0≤φ≤π ∴ φ=π/2 , 此时 f(x)=coswx
由图像关于点M(3π/4,0)对称可得:w*3π/4=kπ+π/2 ,w=(4k+2)/3,k∈Z
且在[0,π/2]上是单调函数 , 所以 wx∈【0,(2k+1)/3]包含于【0,π】
所以 ,(2k+1)/3<=1, K<=1 所以w=2/3或2

收起

f(x)是偶函数,f(x) = f(-x),所以sin(wx + φ) = sin(-wx + φ), sinwx cosφ + coswx sinφ = -sinwx cosφ + coswx sinφ,所以cosφ = 0, 而0≤φ≤π, 所以φ = π/2
所以f(x) = sin(wx + π/2)
f(3π/4) = 0,即sin((3w/4 + 1/2)π) = 0,...

全部展开

f(x)是偶函数,f(x) = f(-x),所以sin(wx + φ) = sin(-wx + φ), sinwx cosφ + coswx sinφ = -sinwx cosφ + coswx sinφ,所以cosφ = 0, 而0≤φ≤π, 所以φ = π/2
所以f(x) = sin(wx + π/2)
f(3π/4) = 0,即sin((3w/4 + 1/2)π) = 0,所以((3w/4 + 1/2)π) = kπ(k是整数),w = (4k-2)/3。
因为f(x)在[0,π/2]上单调,所以f(x)的周期不小于π。所以w<=2。所以w的范围为(0,2]。由上式易知w = 2/3或2。

收起

f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,根据三角函数图像可知,
∴f(0)=sinφ=1或-1,0≤φ≤π,sinφ=-1不成立,
φ=π/2......f(x)=coswx
图像关于点M(3π/4,0)对称
∴f(3π/4)=cos(3wπ/4)=0
[0,π/2]上是单调函数,3π/4-π/2=π/4,
所以要么①[0,...

全部展开

f(x)=sin(wx+φ)(w>0,0≤φ≤π)是R上的偶函数,根据三角函数图像可知,
∴f(0)=sinφ=1或-1,0≤φ≤π,sinφ=-1不成立,
φ=π/2......f(x)=coswx
图像关于点M(3π/4,0)对称
∴f(3π/4)=cos(3wπ/4)=0
[0,π/2]上是单调函数,3π/4-π/2=π/4,
所以要么①[0,π/2]单调减,然后[π/2,3π/4]单调增,要么,②[0,3π/4]单调减。
①情况,T=π=2π/w,w=2
②情况,T=3π=2π/w,w=2/3

收起

φ=π/2 w=4/3
因为偶函数所以φ属于π/2 +kπ
又因为0≤φ≤π所以φ=π/2
又因为其图像关于点M(3π/4,0)对称
所以W*3π/4+π/2=π/2或3π/2
所以W=4/3(因为W大于0.,W*3π/4+π/2=π/2求出来的小于0)
刚好在[0,π/2]上是单调函数

哎,就是不知道怎么写过程...
结果:
W=2 φ=π
分析:
首先 函数为偶函数,图像必关于Y轴对称 y=sin w(x+φ/w)的形式 得到φ/w= π/2
图像 关于点M对称 M点应该在一个最小周期内图像的尾巴或开头位置
则一个完整周期应该是从(-1/4 π, 3/4 π) 即一个周期.
...

全部展开

哎,就是不知道怎么写过程...
结果:
W=2 φ=π
分析:
首先 函数为偶函数,图像必关于Y轴对称 y=sin w(x+φ/w)的形式 得到φ/w= π/2
图像 关于点M对称 M点应该在一个最小周期内图像的尾巴或开头位置
则一个完整周期应该是从(-1/4 π, 3/4 π) 即一个周期.
而为什么要认为是一个周期,而在这个范围内不是几个周期呢?
因为最后一句话:"[0,π/2]上是单调函数" 说明[0,π/2]为函数的半个周期,得到
周期 T=π 得到W=2
这只是推理过程....具休该怎么写明,你综合一下.

收起