(1)f ‘ (x^2)=1/x,x>0,求f(x)(2)g ' (x^2)=x^3,x>0,求g(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:35:00
(1)f ‘ (x^2)=1/x,x>0,求f(x)(2)g ' (x^2)=x^3,x>0,求g(x)
x퐿N@ _[pG=" UI7F *1UxT0 Se 'bgS xEv u묗)xFO/S3DHT E~_9LՑ!$aNXC4Id$LA5n ?t >Wo \A9@;@πXFPi :7Ȍˇz Rl,.8u5l(kR#喁 lQ.U&5l}qAa

(1)f ‘ (x^2)=1/x,x>0,求f(x)(2)g ' (x^2)=x^3,x>0,求g(x)
(1)f ‘ (x^2)=1/x,x>0,求f(x)
(2)g ' (x^2)=x^3,x>0,求g(x)

(1)f ‘ (x^2)=1/x,x>0,求f(x)(2)g ' (x^2)=x^3,x>0,求g(x)
f'(x^2)=1/x ) -> f'(x)=1/√(x) -> f(x)=∫f'(x)dx=∫1/√(x)dx=2√(x).
the same reasoning for the (2).

(1) f'(x^2)=1/x,x>0,求f(x)
令 u=x^2, x>0, 则 x=√u. f'(u)=1/√u, 得 f(u)=2√u+C, 即 f(x)=2√x+C.
(2) g’(x^2)=x^3,x>0,求g(x)
令 u=x^2, x>0, 则 x=√u. g'(u)=u^(3/2), 得 g(u)=(2/5)u^(5/2)+C, 即 g(x)...

全部展开

(1) f'(x^2)=1/x,x>0,求f(x)
令 u=x^2, x>0, 则 x=√u. f'(u)=1/√u, 得 f(u)=2√u+C, 即 f(x)=2√x+C.
(2) g’(x^2)=x^3,x>0,求g(x)
令 u=x^2, x>0, 则 x=√u. g'(u)=u^(3/2), 得 g(u)=(2/5)u^(5/2)+C, 即 g(x)=(2/5)x^(5/2)+C.

收起