已知数列an满足a1=1 且 an=1/3an-1+(1/3)^n 则an数列中项最大值是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:23:30
已知数列an满足a1=1 且 an=1/3an-1+(1/3)^n 则an数列中项最大值是?
x){}KMczb޳ _lۜhhkd<[C}<]Cm C3.OiL2';־\ٜK?mlz{"}j_`gCwuU'j5j*B?EOv삪T;+ML$X'^4TuͳSfjyȅ8U#h&H1ؤg Ov/}Ѐ#8

已知数列an满足a1=1 且 an=1/3an-1+(1/3)^n 则an数列中项最大值是?
已知数列an满足a1=1 且 an=1/3an-1+(1/3)^n 则an数列中项最大值是?

已知数列an满足a1=1 且 an=1/3an-1+(1/3)^n 则an数列中项最大值是?
an=(1/3)a(n-1) +(1/3)^n
变形为
an -n·(1/3)^n=(1/3)[a(n-1) -(n-1)·(1/3)^(n-1)]
从而{an -n·(1/3)^n}是公比为1/3的等比数列,而a1 -(1/3)=2/3
所以 an -n·(1/3)^n=2·(1/3)^n
an=(n+2)·(1/3)^n
所以 a(n+1)-an=(1/3)^n·[(n+3)/3 -(n+2)]=(1/3)^n·(-2n-3)/3