求定积分,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:17:35
求定积分,
xJ@_ )d3tQLmb⪸uN] VwE|ik4f sw9qVz<|?̓ya}PRqnn5<

求定积分,
求定积分,

求定积分,
因为x^3(cosx)^2是个奇函数,所以∫(-π/2->π/2) x^3(cosx)^2dx=0
所以原积分=∫(-π/2->π/2) (sinx)^2(cosx)^2dx=(1/4)∫(-π/2->π/2) (sin2x)^2dx
=(1/4)∫(0->π/2) (sin2x)^2d(2x)
=(1/4)∫(0->π) (sinu)^2du
=(1/2)∫(0->π/2) (sinu)^2du
=π/8