若a>0,b>0,a+b=1,求证(1) (1+1/a)(1+1/b)≥9 (2)a^4+b^4≥1/8有助于回答者给出准确的答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:40:31
若a>0,b>0,a+b=1,求证(1) (1+1/a)(1+1/b)≥9 (2)a^4+b^4≥1/8有助于回答者给出准确的答案
xݐ=N0ǯơ EsD." *uP Hm@dm!1~_"aU6~xO1 f9)U39cOPE:c/ MuٽMug /Ti }+@0Z5Fa20Laʪ*"h2ЌZ U8lo5YkoS~pɨTI|qiԠHe]Dlet*qfŠ1r~UōAW$!_

若a>0,b>0,a+b=1,求证(1) (1+1/a)(1+1/b)≥9 (2)a^4+b^4≥1/8有助于回答者给出准确的答案
若a>0,b>0,a+b=1,求证(1) (1+1/a)(1+1/b)≥9 (2)a^4+b^4≥1/8
有助于回答者给出准确的答案

若a>0,b>0,a+b=1,求证(1) (1+1/a)(1+1/b)≥9 (2)a^4+b^4≥1/8有助于回答者给出准确的答案
(1+1/a)(1+1/b)
=(a+1)/a*(b+1)/b
=(ab+a+b+1)/ab
=(ab+2)/ab
=1+2/ab
(a-b)^2>=0
(a+b)^2>=4ab
ab<=[(a+b)/2]^2=1/4
2/ab>=8
(1+1/a)(1+1/b)>=1/8
a=b=1/2时,取等号.仅供参考

(1+1/a)(1+1/b)
=(a+1)/a*(b+1)/b
=(ab+a+b+1)/ab
=(ab+2)/ab
=1+2/ab
(a-b)^2>=0
(a+b)^2>=4ab
ab<=[(a+b)/2]^2=1/4
2/ab>=8
(1+1/a)(1+1/b)>=1/8
a=b=1/2时,取等号。