F1和F2是双曲线x^2/4-y^2/b^2的两个焦点,点P在双曲线上,且满足角F1PF2=90度,若三角形F1PF2的面积是2,则b的值为?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 11:54:10
xRN@bOWЪp9*=[sGQ{i% AQ "k_x8x=̛ٙk%G-wZ'Ixz.$F\m${a2}tbNja^9VaU4GY?b:(rGq0/Ƭ֝8hMz7sH
ˎedPahN$ꊵr4ʤ]r['2&Hp,d
2w)Ômҗ,$AѬǏWd)hcSV)Ra@HSU}7럊FyEUR a5qQKTnV${PiQYG\0 kCSG{8HAy-)#q#fIOWc)UZś(ե8 QE&
F1和F2是双曲线x^2/4-y^2/b^2的两个焦点,点P在双曲线上,且满足角F1PF2=90度,若三角形F1PF2的面积是2,则b的值为?
F1和F2是双曲线x^2/4-y^2/b^2的两个焦点,点P在双曲线上,且满足角F1PF2=90度,若三角形F1PF2的面积是2,则b的值为?
F1和F2是双曲线x^2/4-y^2/b^2的两个焦点,点P在双曲线上,且满足角F1PF2=90度,若三角形F1PF2的面积是2,则b的值为?
不妨设P在右支上
则PF1-PF2=2a=4 (1)
PF1²+PF2²=(2c)²=4(4+b²) (2)
(1) 平方 PF1²+PF2²-2PF1*PF2=16 (3)
(3)-(2)
2PF1*PF2=4b²
PF1*PF2=2b²
所以 S=PF1*PF2/2=b²=2
b=√2
a=2 c=4+b^2
根据题意 得:PF1 * PF2 = 2S(F1PF2)=4
| PF1-PF2 | = 2a = 4
两边平方后得
PF1^2+PF2^2-2*PF1*PF2 = 16
∴PF1^2+PF2^2 = 24
又因为△F1PF2是RT△,且P为直角顶点。
∴PF1^2+PF2^2=F1F2^2 = 4c^2=4(4+b^2)
即:4(4+b^2)= 24
∴b=√2