f(x)=4x+ax^2-(2/3)x^3 (x属于R) 在[-1,1]上为增函数, 求a的范围.用两种方法第一种,用导数的符号判别函数的增性.第二种,用利用极值.这个不是很明白甚么意思哈哈哈谢谢啦,别复制别人的,哪个什

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 23:06:35
f(x)=4x+ax^2-(2/3)x^3 (x属于R) 在[-1,1]上为增函数, 求a的范围.用两种方法第一种,用导数的符号判别函数的增性.第二种,用利用极值.这个不是很明白甚么意思哈哈哈谢谢啦,别复制别人的,哪个什
xSn@,lvv|DU#,+Ԩ&!I jBJTCΰzUj.U%{4{ιxf枩Ͻ5}ScrRMcpݣ<g$H}w\8o1 i~V܅Ɨ^M;%~Hk@C^``^4$-F Gʁ%f'ab=?4I"Tݞ2Tfd_Je? P 8g>m:ڧ;Nf3$K2N*>5ͥY& ⲦiSj;baLjgu巾s-\QAϻKӛ)Vx &|-&Lw8ExIȍEź-ž:09i"gO<~7-(EdS}PejtͽVv]%.i  1 Vd8UU3\j52cn0WYtтV5^ȃ9Tg +#^f/GI

f(x)=4x+ax^2-(2/3)x^3 (x属于R) 在[-1,1]上为增函数, 求a的范围.用两种方法第一种,用导数的符号判别函数的增性.第二种,用利用极值.这个不是很明白甚么意思哈哈哈谢谢啦,别复制别人的,哪个什
f(x)=4x+ax^2-(2/3)x^3 (x属于R) 在[-1,1]上为增函数, 求a的范围.用两种方法
第一种,用导数的符号判别函数的增性.第二种,用利用极值.这个不是很明白甚么意思
哈哈哈谢谢啦,别复制别人的,哪个什么极值的详细点谢谢

f(x)=4x+ax^2-(2/3)x^3 (x属于R) 在[-1,1]上为增函数, 求a的范围.用两种方法第一种,用导数的符号判别函数的增性.第二种,用利用极值.这个不是很明白甚么意思哈哈哈谢谢啦,别复制别人的,哪个什
f(x)=4x+ax^2-2x^3/3,x∈[-1,1]上是增函数
故f'(x)=4+2ax-2x^3≥0在[-1,1]内恒成立
而f'(x)是一个开口向下的抛物线,它在[-1,1]恒大于等于0的条件是
f'(1)≥0且f'(-1)≥0
因此4+2a-2≥0且4-2a-2≥0
解得-1≤a≤1
故a∈[-1,1]
f(x)=4x+ax²-2x³/3,x∈[-1,1]上是增函数
f'(x)=4+2ax-2x²≥0在[-1,1]内恒成立
即4+2ax≥2x²在[-1,1]内恒成立
(1)a>0时,只要当x=-1时上不等式成立即可
即4-2a≥2 ===> 0<a≤1
(2)a<0时,只要x=1时上不等式成立即可
即4+2a≥2 ===> -1≤a<0
(3)a=0时显然成立
综合(1)、(2)、(3),a∈[-1,1]