证明函数恒等式设f(x)在〔0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x )≥f‘(x)(x>0),求证f(x)≡0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:42:12
x){ٌ{MqOX/{:Ya=ݏ:zkuR@EHROZ~ϓS^bf)@[:B9
^ڣP95C&$cw/Dfp:Zf)4*4lԁ}uR4t+4A`16!ntΆ'"Dm@ Ms
证明函数恒等式设f(x)在〔0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x )≥f‘(x)(x>0),求证f(x)≡0
证明函数恒等式
设f(x)在〔0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x )≥f‘(x)(x>0),求证f(x)≡0
证明函数恒等式设f(x)在〔0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x )≥f‘(x)(x>0),求证f(x)≡0
由f(x)>=f'(x)得,e^(-x)f(x)-f'(x)e^(-x)=[e^(-x)f(x)]'>=0,所以e^(-x)f(x)