y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:07:15
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
xRN@|YB A4mrRpCmLOc_7јϲ ~JHx7LVU[1֚*n'dxDܷd/(Ě$z=:Nm2vp؏̭TR,A7 oRy[E]!(qx lzo30C&RfgDG5;&U4c%c<{ &/$s\T@JtBHwX9,0.Lv$;fW3-Bq@rOES}7>"x\RqpC&[*i4)#~cVVty.T>'pȏ

y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~
sin(x+y)/[cos(x+y)-1]^3

y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
一阶导数你求对了
令 t = dy/dx = cos(x+y)/[1-cos(x+y)]
dy = cos(x+y)·dx/[1-cos(x+y)]
dx+dy = cos(x+y)·dx/[1-cos(x+y)] + dx = dx/[1-cos(x+y)]
t+1 = 1+ cos(x+y)/[1-cos(x+y)] = 1/[1-cos(x+y)]
那么原函数的二阶导数即是 dt/dx
t[1-cos(x+y)] = cos(x+y)
[1-cos(x+y)]dt + tsin(x+y)(dx+dy) = -sin(x+y)(dx+dy)
[1-cos(x+y)]dt = -sin(x+y)(dx+dy)(t+1)
代入上面dx+dy和t+1的结论可得
[1-cos(x+y)]dt = -sin(x+y)·{dx/[1-cos(x+y)]}·{1/[1-cos(x+y)]}
[1-cos(x+y)]dt = -sin(x+y)·dx/[1-cos(x+y)]^2
移项即可得结果