y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:07:15
xRN@|YB A4mrRpCmLOc_7јϲ~JHx7LVU[1֚*n'dxDܷd/(Ě$z=:Nm2vp؏̭TR,A7
oRy[E]!(qx
lzo30C&RfgDG5;&U4c%c<{
&/$s\ T@JtBHwX9,0.Lv$;fW3-Bq@rOES}7>"x\R qpC&[*i4)#~cVVty.T>'pȏ
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~
sin(x+y)/[cos(x+y)-1]^3
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
一阶导数你求对了
令 t = dy/dx = cos(x+y)/[1-cos(x+y)]
dy = cos(x+y)·dx/[1-cos(x+y)]
dx+dy = cos(x+y)·dx/[1-cos(x+y)] + dx = dx/[1-cos(x+y)]
t+1 = 1+ cos(x+y)/[1-cos(x+y)] = 1/[1-cos(x+y)]
那么原函数的二阶导数即是 dt/dx
t[1-cos(x+y)] = cos(x+y)
[1-cos(x+y)]dt + tsin(x+y)(dx+dy) = -sin(x+y)(dx+dy)
[1-cos(x+y)]dt = -sin(x+y)(dx+dy)(t+1)
代入上面dx+dy和t+1的结论可得
[1-cos(x+y)]dt = -sin(x+y)·{dx/[1-cos(x+y)]}·{1/[1-cos(x+y)]}
[1-cos(x+y)]dt = -sin(x+y)·dx/[1-cos(x+y)]^2
移项即可得结果
y = sin根号x / x 的一阶导数
y = sin(根号x) / x 的一阶导数
y= sin根号x / x 的一阶导数
求隐函数的一阶导数y sin x-cosx(x-y)=0
y=sin(x+y),一阶隐导数y'=cos(x+y)/[1-cos(x+y)]我懂,但如何求二阶隐导数~sin(x+y)/[cos(x+y)-1]^3
已知xy-sin(πy^2)=0 x^2y+siny^2=0求y的一阶导数
y=f(sin^2(3x))求一阶二阶导数,
y=f(sin^2(3x))求一阶二阶导数,
计算Z=x^y+sin(xy)的两个一阶偏导数
求方程所确定的隐函数y的二阶导数 (1)y=sin(x+y) (2)y=1+xe^y 您刚才解答的是一阶导数,不是二阶导数
求一阶偏导数:z=arctan√(x^y )
以y=sin(x+C)为通解的一阶常微分方程是?y=√1-y^2
设y=sin[f(x^2)],其中f(x)具有一阶导数,则dy/dx=?
z=x平方y-根号下(x-y平方) 求一阶偏导数
y=sin^3x的导数
y=x^sin的导数
y=sin x的导数是什么,
y的二阶导数+2y的一阶导数-3y=6x+1的通解