用配方法解方程:ax²+bx+c=0(a≠0,b²—4ac≥0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:09:20
用配方法解方程:ax²+bx+c=0(a≠0,b²—4ac≥0)
x){>egv><@JPS64NN5x#Q$)&ɏ:e:mc~ ݔQgT N7JԌ3M37I&e T!gH>[Ŗ|ڿɎnB#!&&AݏqDZm<;P.

用配方法解方程:ax²+bx+c=0(a≠0,b²—4ac≥0)
用配方法解方程:ax²+bx+c=0(a≠0,b²—4ac≥0)

用配方法解方程:ax²+bx+c=0(a≠0,b²—4ac≥0)
a(x^2+bx/a)+c=0
a(x+b/2a)^2-b^2/4a+c=0
a(x+b/2a)^2=(b^2-4ac)/4a
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=正负(根号下b^2-4ac)/2a
x=【-b正负(根号下b^2-4ac)】/2a
+