f(a∩b)⊂f(a)∩f(b)证明证明过程已经知道,关键是为什么不是等于而是包含,f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:49:16
f(a∩b)⊂f(a)∩f(b)证明证明过程已经知道,关键是为什么不是等于而是包含,f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).
xRNPKHU,ݖvA|EbA^VQ JBc!@cG;_k{_\5i.gNqΙ[]&>+>[T\fv?Ӄ0~K`2zgM d6si0R05Aۃ]㍰W9gƻL*U.ڑ 6)WFQIVIb㢇l{PRIhYՊ>Xiv Ǝ.DL7<2gU0LЯ.k *|ܩ FVxQ9k^^mmmn&49˟Ul l>^_Lm \\O[umןGVZOlaIxu >;[X]*oIR b  :}d`.ޱ'Ig], 'f49Q :o3>^v

f(a∩b)⊂f(a)∩f(b)证明证明过程已经知道,关键是为什么不是等于而是包含,f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).
f(a∩b)⊂f(a)∩f(b)证明
证明过程已经知道,关键是为什么不是等于而是包含,
f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).

f(a∩b)⊂f(a)∩f(b)证明证明过程已经知道,关键是为什么不是等于而是包含,f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).
建议把问题叙述完整:
f:X → Y是一个映射,A,B是X的子集,证明f(A∩B) ⊆ f(A)∩f(B).
之所以只是包含而不是等于,因为等号是不一定成立的.
例如X = [-1,1],Y = [0,1],A = [-1,0],B = [0,1],并取f(x) = |x|.
则f(A) = [0,1] = f(B),f(A)∩f(B) = [0,1],但A∩B = {0},f(A∩B) = {0}.
因此只成立f(A∩B) ⊆ f(A)∩f(B)而不成立f(A∩B) = f(A)∩f(B).

好像是不满足函数的定义,函数定义是多对一的,题目中的定义域的交集的函数值是小于等于定义域函数值的交集的。
你可以找课本看一下定义,希望对你有帮助。