7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:29:03
7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α
xSNP}7/"!ƸjFLQɌQ!2EHUߠ/iW|#nܘIHʽ9|~ժŅG}޺yUvb»mcįvkV 4sAq괱 Ǡ}.ݼG?u֘[:E8J1q]fSaG=DkB o21j3K`;S΀tD)/i{ U>kt#%RTYDbn҃|\[oN{Ό0 ^(eq R +}ֹq+ѕ΄@/BRXZg&-^zD`ȨIt-,,s PzqӉb;K4u#,-,;q7ɒH¢POۆM-#Xb?M{ג[.-B_xY5` mum]` *

7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α
7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )
A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α2)
C.1/2 (β1+β2)+C1α1+C2(β1-β2) D.1/2 (β1-β2)+C1α1+C2(β1+β2)
选哪个啊,

7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α
选A!
非齐次线性方程组Ax=b的通解结构:γ=γ0+η,其中γ0是其一个特解,η是Ax=0的通解.
A中,1/2 (β1+β2)仍然是Ax=b的一个解,即特解γ0,C1α1+C2(α1+α2)=(C1+C2)α1+C2α2是Ax=0的通解,(其中,C1,C2为任意常数,C1+C2,C2自然也是任意常数),即η.正确.
B中,β1-β2是Ax=0的解,1/2 (β1-β2)+C1α1+C2(α1+α2)是Ax=0的通解,不是Ax=b的通解.
C中,C1α1+C2(β1-β2)仅是Ax=0的一个解,却不是通解.
D中,错误同B,C,没有出现Ax=0的通解.

lz答案没错吧。。我觉得A,C都行啊。

已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系,k 已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题. η1,η2是非齐次线性方程组AX=b的解求AX=0的解 7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α 线性代数,一道填空题.设α是齐次线性方程组Ax=0的解,而β是非齐次线性方程组Ax=b的解,则A(3α+2β)=_______.该题应该如何做? 已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系有ABCD四个选项,B:k1α1+k2(β1—β2)+(β1+β2)/2 为什么不对?k1α1+k2(α1+α2)+(β1+β2) 设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解 设α是非齐次线性方程组AX = B的解向量,β是AX = o 的解向量,则 1/2 (α + β )是方程组?的解向l量 α0是非齐次线性方程组AX=β的一个解,α1,α2,...αr是AX=0的基础解系.证明α0,α1...αr线性无关. 设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明β,α1,α2,...,αn-r线性无关.(线性代数, 设A为4*3的矩阵,η1η2η3是非齐次线性方程组AX=β的3个线性无关的解,k1k2为任意常数,则Ax=β的通解为?我想问的是如何确定A的秩为1,即如何通过”η1η2η3是非齐次线性方程组AX=β的3个线性无关的 几个线性方程组问题:1:已知β1,β2是非齐次线性方程组AX=b的两个不同解,α1,α2是AX=0的基础解系,K1,K2为任意常数,为什么通解为K1α1+K2(β1-β2)+1/2(β1+β2)?2:yaos要使α1=(1,0,2)T,α2=(0,1,-1)T都 设η1,η2是非齐次线性方程组AX=b的解,又已知k1η1+k2η2也是AX=b的解,则k1+k2=? 设n1、n2是非齐次线性方程组AX=b的解,又已知k1n1+k2n2也是AX=b的解,则k1+k2=?数字1、2都是下标 设α1,α2是非齐次线性方程组AX=B的解,β是对应的齐次方程组AX=0的解,则AX=B必有一个解是( )A、α1+α2β B、α1-α2 C、β+α1+α2 D、β+1/2α1+1/2α2 线代证明,设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础解析,则 设β1,β2是非其次线性方程组AX=b的两个不同的解,η1,η2是对应齐次线性方程组AX=0的基础解系.k1,k2为任意常数,则AX=b的通解必为 ( )B k1η1+k2(η1-η2)+(β1+β2)/2D k1η1+k2(β1-β2)+(β1+β2)/2 设β1,β2是非其次线性方程组AX=b的两个不同的解,η1,η2是对应齐次线性方程组AX=0的基础解系k1,k2为任意常数,则AX=b的通解必为 ( )A k1η1+k2(η1+η2)+(β1-β2)/2B k1η1+k2(η1-η2)+(β1+β2)/2C