∫dx∫f(x,y)dy 0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 11:51:44
x){Ա:HiTTjT*$c/قzTTT=mx:gz>e]ϗgul{:i[u~kɳE,|(4=Ogo` 2 O?U R@HҕPV$ف n x
∫dx∫f(x,y)dy 0
∫dx∫f(x,y)dy 0
∫dx∫f(x,y)dy 0
根据0
= ∫dy(0,2)∫(0,y)f(x,y)dx
∫dx∫f(x,y)dy 0
交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy
证明 ∫[0,a]dx∫[0,x]f(y)dy=∫[0,a](a-x)f(x)dx
变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx
交换积分次序∫(0,1)dy∫(0,y)f(x,y)dx+∫(1,2)dy∫(0,2-y)dxf(x,y)dx
交换积分次序 ∫(4,0)dx∫(x,2x^0.5)f(x,y)dy
更换积分次序∫(0,2)dx∫(x,3x)f(x,y)dy
∫(0→1)dx∫(0→1-x)f(x,y)dy=?
∫[0,1] dx∫[0,x]f(x,y)dy= ?
设F(X,Y)是连续函数,则∫(a,0)dx∫(x,0) f(x,y)dy=
∫[0,1] dx∫[-x^2,1] f(x,y)dy+∫[1,e] dx∫[lnx,1] f(x,y)dy交换积分次序∫[0,1] dy∫[0,1] f(x,y)dx=∫[0,1] x| [0,1]dy= ∫[0,1] dy=∫y| [0,1]=1?
∫[0,1] dx∫[-x^2,1] f(x,y)dy+∫[1,e] dx∫[lnx,1] f(x,y)dy交换积分次序∫[0,1] dy∫[0,1] f(x,y)dx=∫[0,1] x| [0,1]dy= ∫[0,1] dy=∫y| [0,1]=1?
更换积分次序∫(e,1)dx(lnx,0)f(x,y)dy
更换积分次序∫(e,1)dx(lnx,0)f(x,y)dy
二重积分计算:∫[0,a]dx∫[0,x] f ´(y)/√[(a-x)(x-y)] dy
交换积分次序,∫(上限2,下限0)dy∫(上限2y,下限y^2)f(x,y)dx
交换积分顺序后∫(0→1)dy∫(y→√y)f(x,y)dx=?
改变二次积分∫[0,2]dx∫[x,2x]f(x,y)dy的积分次序 改变二次积分∫[0,2]dy∫[y^2,2y]f(x,y)dx的积分次序①改变二次积分∫[0,2]dx∫[x,2x]f(x,y)dy的积分次序 ②改变二次积分∫[0,2]dy∫[y^2,2y]f(x,y)dx的积分次