证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:00:47
证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)
xRJA~ v]a"G}/ŅƖ|5"C"TBJ/R{Y-:J|ss&n'潢W?OOw=վ-T`cb(/Gnoi{2RًD^= /=QU;okkgZEwIgq ͏Bὡ:eܻ$)Xz; wPۜ]!&YGy]lDeAALL&IdaN\0S)kte-Џt1٥8+aU'CGw Ukxp%g3_Ml(iD'¤B @FC,fNaJX]t&)+y։.L韭춗lm~)6C

证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)
证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)

证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)
这是海伦公式
用三角公式和公式变形来证明.设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
p=(a+b+c)/2 则,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]