抛物线y^2=4x截直线y=2x+m所得弦长AB为5.求m.以AB为底、以x轴上某一点P为定点作三角形PAB,若三角形PAB面积为根号5,求P坐标

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 17:19:38
抛物线y^2=4x截直线y=2x+m所得弦长AB为5.求m.以AB为底、以x轴上某一点P为定点作三角形PAB,若三角形PAB面积为根号5,求P坐标
x͒J0_%&kW 'z Tءu;8!ldnv]\vi1i֦x+~N4R0WA8լ? _t/D*L!Uye Ѐ@Q2|lF[N:ɪmo2U`1 S2JJ=g3B)11Оd)>LJcRDD3D~`E LU"ur}{JmVJ@ r`+qXjWhS1J~[%)yl'僣|r>ؚϏ

抛物线y^2=4x截直线y=2x+m所得弦长AB为5.求m.以AB为底、以x轴上某一点P为定点作三角形PAB,若三角形PAB面积为根号5,求P坐标
抛物线y^2=4x截直线y=2x+m所得弦长AB为5.
求m.
以AB为底、以x轴上某一点P为定点作三角形PAB,若三角形PAB面积为根号5,求P坐标

抛物线y^2=4x截直线y=2x+m所得弦长AB为5.求m.以AB为底、以x轴上某一点P为定点作三角形PAB,若三角形PAB面积为根号5,求P坐标
(1) y^2=4x y=2x+m 联立解得:
  ( -m/2+1/2+1/2√(-2*m+1),1+√(-2*m+1))
  (-m/2+1/2-1/2√(-2*m+1) ,1-√(-2*m+1))
  -2m+1-8m+4=25
  -10m=20
  m=-2
(2) A、B坐标:((3+√5)/2,1+√5),((3-√5)/2,1-√5)
  |(3+√5)/2,1+√5,1 ; (3-√5)/2,1-√5,1; x ,0,1|=2√5
  2√5x-2√5=2√5
  x=2
  P坐标(2,0)