曲柄连杆在图示位置时B点速度Vb和加速度Ab为答案 Vb=r*ω 方向向左 Ab=1/根号三 *r*ω2(1处以根号三*角速度的平方*半径)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:30:37
曲柄连杆在图示位置时B点速度Vb和加速度Ab为答案 Vb=r*ω 方向向左    Ab=1/根号三 *r*ω2(1处以根号三*角速度的平方*半径)
xT[oA+&6 {ohvvق@4 +@/Zz-mmFK  5 !;93g|z^N }=pتkA_7&jTwO&ىH֍M !n{ePD$YÅ/Z5G٬CI[ivc3wIVc5kc3y|>;P vc`Pjep!RV3؇X^~&@i?^+ÅE?0:4ю+ڔE؇,]8S >.D,@R=s k"WE|Xj'-l#79e"@L!iᄐX0O4rB*.mB3ڍ6_@0LQ~ۚ,h;Clv} 󱋏 g*@Z00<Qzqw!狸gޘ0J1Z5{?0SMY)ąCLLቫgv/:0BQEI;ڭ(

曲柄连杆在图示位置时B点速度Vb和加速度Ab为答案 Vb=r*ω 方向向左 Ab=1/根号三 *r*ω2(1处以根号三*角速度的平方*半径)
曲柄连杆在图示位置时B点速度Vb和加速度Ab为
答案 Vb=r*ω 方向向左    Ab=1/根号三 *r*ω2(1处以根号三*角速度的平方*半径)

曲柄连杆在图示位置时B点速度Vb和加速度Ab为答案 Vb=r*ω 方向向左 Ab=1/根号三 *r*ω2(1处以根号三*角速度的平方*半径)
这个题还得知道曲柄OA的长度吧?
答案:Vb=wr Ab=w2*r(角速度的平方*r)+@*r(角加速度*r)
设OA的长度为r,AB和OB的夹角为&(虽然一会能约掉)
Va的方向是 水平向右,而Vb也是水平向右的,所以杆AB瞬时平动,所以此时Vb=Va=wr
选取B为基点,则看成A绕B转动(求加速度一般只能用基点法)
所以有:Aa=Ab+Aabn(A对B的法向加速度)+Aabt(A对B的切向加速度)
Aa=Aan(A对B的法向加速度)+Aat(A对B的切向加速度)
联立求
Aan(A对B的法向加速度)+Aat(A对B的切向加速度)=Ab+Aabn(A对B的法向加速度)+Aabt(A对B的切向加速度)
因为杆AB是瞬时平动,所以Wab=0,所以Aabn(A对B的法向加速度)=0
所以: Aan(A对B的法向加速度)+Aat(A对B的切向加速度)=Ab+Aabt(A对B的切向加速度)
四个矢量中,知道6个,未知的是Ab的大小(即所求)和Aabt(A对B的切向加速度)的大小.
将四个量投影到于Aabt(A对B的切向加速度) 垂直的轴上.则Aabt(A对B的切向加速度)=0
进而可以求出Ab了.
Aan(A对B的法向加速度)=w2*r(角速度的平方*r)
Aat(A对B的切向加速度) =@*r(角加速度*r)