下列条件中能确定两个三角形全等的是(\x05 ) A.一边及这条边上的高相等 \x05 B.一边及这条边上的中线对应相等 C.两角及第三个角平分线对应相等 \x05 D.两条边及夹角的平分线对应相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:36:32
下列条件中能确定两个三角形全等的是(\x05 ) A.一边及这条边上的高相等 \x05 B.一边及这条边上的中线对应相等 C.两角及第三个角平分线对应相等 \x05 D.两条边及夹角的平分线对应相等
下列条件中能确定两个三角形全等的是(\x05 )
A.一边及这条边上的高相等 \x05
B.一边及这条边上的中线对应相等
C.两角及第三个角平分线对应相等 \x05
D.两条边及夹角的平分线对应相等
下列条件中能确定两个三角形全等的是(\x05 ) A.一边及这条边上的高相等 \x05 B.一边及这条边上的中线对应相等 C.两角及第三个角平分线对应相等 \x05 D.两条边及夹角的平分线对应相等
选C
已知:<A=<A',<B=<B',CD,C'D'分别是<ACB,<A'C'B'的平分线,AD=A'D'
求证;△ABC≌△A'B'C'
证明::<A=<A',<B=<B'
∴<ACB=<A'C'B'
又,CD,C'D'分别是<ACB,<A'C'B'的平分线
<ACD=<A'C'D'
又∵<A=<A',AD=A'D'
△ACD≌△A'C'D'
AC=A'C'
因为,<A=<A',<B=<B'
;△ABC≌△A'B'C'
可能是C
C肯定对
根据判断公理,D
答案C:因为两角相等,第三角也等,第三角的角平分线分出的小角也等,就可证明小三角形全等,得到一个边等,所以大三角形也全等。
D
A、钝角与锐角的三角形,符合该件
B、中线相等,但高可以不一样
C、正确
用角平分线定理。(若AD是三角形ABC的一条角平分线,则AB/BD=AC/CD)
还有一个定理,AD*AD=AB*AC-BC*CD
两个定理一起用
若不知道AD*AD=AB*AC-BC*CD
可延长AD,与BP//AB相交于P,先证三角形ACP全等
再证三角形A...
全部展开
A、钝角与锐角的三角形,符合该件
B、中线相等,但高可以不一样
C、正确
用角平分线定理。(若AD是三角形ABC的一条角平分线,则AB/BD=AC/CD)
还有一个定理,AD*AD=AB*AC-BC*CD
两个定理一起用
若不知道AD*AD=AB*AC-BC*CD
可延长AD,与BP//AB相交于P,先证三角形ACP全等
再证三角形ABC全等
D、正确
在两个三角形中,分别过C , C' 作BD , B'D' 的平行线,交BA得延长线于E ,交B' A' 的延长线于E' 于是可以得到,BC= BE B'C' =B'E' 由平行, BD:CE=AB:AE
B'D' : E'C' =A'B' :A'E' 由题设,AB=A'B' BC=B'C' BD=B'D' 可知,E'C' =EC
所以三角形BCE 和三角形B'C' E' 全等。(边边边) 进一步得到角EBC=角E' B'C'
有,角ABC=角A'B' C' 。由边角边,可知三角形ABC和三角形A'B' C' 全等。
答案有两个:C、D
收起