设n阶矩阵A有一个特征值为1,则|-E+A|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:24:35
设n阶矩阵A有一个特征值为1,则|-E+A|=
x){n_۞_rVgs:hxcΝO5>md.C3kt]klmI֣_`gCMP|۞7:ٌg5O[[_,k|6wۀ 5v**$فe

设n阶矩阵A有一个特征值为1,则|-E+A|=
设n阶矩阵A有一个特征值为1,则|-E+A|=

设n阶矩阵A有一个特征值为1,则|-E+A|=
|-E+A|=0
知识点:λ是A的特征值的充要条件是 |λE - A|=0

设n阶矩阵A有一个特征值为1,则|-E+A|= 设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位阵.若A有特征值λ,则(A*)^2+E必有特征值 设2为矩阵A的一个特征值,则矩阵3A必有一个特征值? 设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为? 设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?如题 设a是n维非零实列向量,矩阵A=E+aaT(a的转置),n>=3,则A有几个特征值为1? 设为n阶方阵,为的伴随矩阵,若有特征值为λ,则A-1的特征值之一为 设λ为n阶方阵A的一个特征值,则A^2+2A+E的一个特征值为 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是 设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是A.λ^-1 |A|^nB.λ |A|C.λ^-1 |A|D.λ|A|^n 线性代数 设A为n阶矩阵,|A|=5,A+3E不可逆,求伴随矩阵A*的一个特征值 大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值我是这样证明的因为AAT=E,所以A为正交 设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为 设2是可逆矩阵A的一个特征值,则3A^2+E的一个特征值为 9.设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( ) 关于线性代数的一道问题设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为多少 1.设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则A*必有一个特征值为?2 .设A为3阶1.设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则A*必有一个特征值为?2 .设A为3阶矩阵,且|A|= 3,则|(-A)^-1|=?