证明题.第五题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:29:52
证明题.第五题
xTnW+}9ԃ;s%18U>)HJh "@%i+SRm 38ܧ>i޳>} |yNyu*Np5n}Y+[%sSJm+466ZWVc}c]֪i.[U7+4 BjBAX[!gHY; lu"!і!AW.4#)2"O#J OMz 0s '\Ĝ0^Ig;Lpjʗrk__RM-" Y t =ȟՌ"Qe<5rQ9°rJ%J(7.d"\r5-6R#iOtZ\K aOOjI4;kIe5I<&MSN~ J-Uy|:mt T䂱Y* /ZZ>>N}&f.1?,lƒh›jI(qDpr3i GA+džEC(d^+.2ӊLYG{h2bŔ a.Y0_xK*i8}ةH ! <&ZXd<3M-TIiRp ( hiD)sc"f$:t%\d5͞nv've`kCaEg fdn`oyx_5 H\ON3O`Pzȣ?{[#d?܇,g^0{;`.&"g¹j2|!>I!1|`\Ltwe^]YAl.j>}*{SvVZ+Dчǩ?Li

证明题.第五题
证明题.第五题
 

证明题.第五题

证明:∵BC=CD
∴∠CBD=∠CDB
∵CD∥AB
∴∠CDB=∠DBE
∴∠DBE=∠CBD
∵∠ADB=90 ° AE=BE
∴DE=BE
∴∠DBE=∠BDE
∴∠BDE=∠CBD
∴DE∥BC
∵DE∥BC CD∥BE
∴四边形BCDE是平行四边形
∵BC=CD
∴平行四边形BCDE是菱形

AD垂直BD,所以三角形ADB是直角三角形。E是AB的中点,所以,DE=AB/2=EB(直角三角形斜边上的中线等于斜边的一半,三角形DEB是等腰三角形。而BC=CD,所以三角形BCD是等腰三角形。AB平行CD,角CDB=角EBD,所以然角DBC=角BDE,所以三角形DEB和三角形BCD全等。所以BC=CD=DE=EB,四边形BCDE是菱形。...

全部展开

AD垂直BD,所以三角形ADB是直角三角形。E是AB的中点,所以,DE=AB/2=EB(直角三角形斜边上的中线等于斜边的一半,三角形DEB是等腰三角形。而BC=CD,所以三角形BCD是等腰三角形。AB平行CD,角CDB=角EBD,所以然角DBC=角BDE,所以三角形DEB和三角形BCD全等。所以BC=CD=DE=EB,四边形BCDE是菱形。

收起