已知函数f(x)=x^3+x-16.(1)求过点p(2,-6)的曲线y=f(x) 的切线方程2)直线p为曲线y=f(x)的切线,且经过原点,求直线p的方程和切点坐标

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:21:03
已知函数f(x)=x^3+x-16.(1)求过点p(2,-6)的曲线y=f(x) 的切线方程2)直线p为曲线y=f(x)的切线,且经过原点,求直线p的方程和切点坐标
xVN@HJ,`o1/@jxA~KiMk R^HH v =EUJ}33gL:Wg/j'Si[Ɍjfv4m*i1-FӪ0MvZUs:oSXJkC?|[NEa[_KwZCp I<㲷[ν|=;/b@O!v0AؓL5XfF,jIe9s_,ON…Qؘuh^_~56[0Yɲэ\vi[K"MۆJXfۮ:bh1k1ݳ–tV1R$…T7e$]v$":2zim:*$HFdòJnMūprbaּ l6; K+ye=m;}QG8`bӐ ]g1>7''6̗@Kq qAêμ_bQ$SKFJ0i==ΡGGGKC~Z|=%ÐBդqejhg oSzqj)GJRB-8iV'PH5"Xä9x9/0C&`G xdc[@oPJ}H֞ؓz/_8wta! T BuMovɭ}W(#Ue\b:Eј!GJtZ+7/5L0T1"GW6[}LD, b@D>D%pʢŠ0?Re% jAF7n17Pv[?0rz^h[H`(Z6ANא|w

已知函数f(x)=x^3+x-16.(1)求过点p(2,-6)的曲线y=f(x) 的切线方程2)直线p为曲线y=f(x)的切线,且经过原点,求直线p的方程和切点坐标
已知函数f(x)=x^3+x-16.(
1)求过点p(2,-6)的曲线y=f(x) 的切线方程
2)直线p为曲线y=f(x)的切线,且经过原点,求直线p的方程和切点坐标

已知函数f(x)=x^3+x-16.(1)求过点p(2,-6)的曲线y=f(x) 的切线方程2)直线p为曲线y=f(x)的切线,且经过原点,求直线p的方程和切点坐标

(1)
f'(x)=3x^2+1
f'(2)=13
所求切线的斜率为13
切线方程为y+6=13(x-2),整理,得y=13x-32
(2)
设直线P方程y=kx,切点坐标(x0,y0)
则有y0=kx0,y0=x0^3+x0-16
f'(x0)=3x0^2+1
k=3x0^2+1
y0=(3x0^2+1)x0=x0^3+x0-16
整理,得
x0^3=-8
x0=-2
k=3(-2)^2+1=13
y0=kx0=13(-2)=-26
直线P方程:y+26=13(x+2),整理,得y=13x
所求直线P方程为y=13x,切点坐标(-2,-26)

1 y'=3x^2+1,代入得到y'=13,所以切线方程为y=13x-32
2 设p点x坐标为x0,那么p点坐标为(x0, x0^3+x0-16)
切线方程为y=(3x0^2+1)x-2x0^3-16
把原点坐标代入得到2x0^2-16=0,所以x0=+-2根号2
切点坐标为(2根号2, 10根号2-16)和(-2根号2, -10根号2-16)
切线方程为y...

全部展开

1 y'=3x^2+1,代入得到y'=13,所以切线方程为y=13x-32
2 设p点x坐标为x0,那么p点坐标为(x0, x0^3+x0-16)
切线方程为y=(3x0^2+1)x-2x0^3-16
把原点坐标代入得到2x0^2-16=0,所以x0=+-2根号2
切点坐标为(2根号2, 10根号2-16)和(-2根号2, -10根号2-16)
切线方程为y=25x-16根号2-16和y=25x+16根号2-16

收起

1、由于f'(x)=3x^2+1≫1,故函数单调递增
p(2,-6)在曲线y=f(x)上,
对于曲线上的点,过该点的切线的斜率和曲线在该点的导数相等
故切线的斜率k=3x4+1=13,切线方程为
y+6=13(x-2)即y-13x+32=0
2、对于曲线上的任意一点(x。,y。),其切线方程满足
y-y。=(3x。^2+1)(x-x。)<...

全部展开

1、由于f'(x)=3x^2+1≫1,故函数单调递增
p(2,-6)在曲线y=f(x)上,
对于曲线上的点,过该点的切线的斜率和曲线在该点的导数相等
故切线的斜率k=3x4+1=13,切线方程为
y+6=13(x-2)即y-13x+32=0
2、对于曲线上的任意一点(x。,y。),其切线方程满足
y-y。=(3x。^2+1)(x-x。)
又y。=x。^3+x。-16
且对于本题有,切线过原点,即
-(x。^3+x。-16)=(3x。^2+1)(-x。)
解得:x。=-2
从而y。=x。^3+x。-16=-26
直线p的方程为:y+26=13(x+2)
即y=13x
切点坐标为(-2,-26)
(这是解过空间一定点且和曲线相切的一类题通法)

收起