在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F1.请探索BE,DF,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:52:28
在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F1.请探索BE,DF,
xSRP3Bmr& NBgpUqƧRڢ0(Pt* "9I/axa霳9D^.i;ڇ>.\?Vwz6-C^qgcD^`8;ߌIrN^=^9!ɋ-l=Z(W颾_8Q_z;b\(Q.iXw]BE>}Ac7xE[iiml˘Z7mߜj:U@7v;Ktbύ'd]?3v.k,9!nV[viS_A@znǴiWHN.H$$A`9h|mږZq\T ndp7x`9kM+ΑgE<^V{#R2 +[7#MK5mùˑh*x@+KDx%bs&^FcJ(NvS$~$q4EnZDP|>n*L(L{#Y$J B"/ ! )hz*[q=&o"=nI/R(*BtXް\u

在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F1.请探索BE,DF,
在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系
在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F
1.请探索BE,DF,EF这三条线段长度具有怎样的数量关系.若点P在DC的延长线上,那么这三条线段的长度具有怎样的数量关系呢?若点P在CD的延长线上呢?请分别写出结论.
2.请在1中三个结论选择一个加以证明.

在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F1.请探索BE,DF,
相等

这个 问题太乱。

d

如图,可以证明,三角形ABE和三角形DAF全等

因此 BE=AF   AE=DF 

所以 BE=DF+EF

 若P在DC的延长线上,DF=BE+EF

若P在CD的延长线上,

则 EF=BE+DF

用第三种情况作说明:

设P1在CD的延长线上,BE1⊥PA1、DF1⊥PA1,垂足分别为E1、F1

在Rt三角形ABE1和Rt三角形BAF1中。

AB=AD

<BAE1=90-DAF1=<ADF1

所以。Rt三角形ABE1和Rt三角形BAF1全等

BE1=AF1   E1A=DF1

则BE1+DF1=AF1+E1A=E1F1

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点。(1)如图1,若点P在线段OA上运动(不与点A、O重合),作PE⊥PB交CD于点E. 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P在线段 在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.( 如图,正方形ABCD的边长是4,点M在CD上,且DM=3,P是AC上一动点,求PD+PM的最小值 平面上有三点M、A、B 若MA=MB则称点A、B为点M的等距点问题探究如图,在正方形ABCD中,AB=1,点P是对角线AC上一动点,在边CD上是否存在点Q,使点B,Q为P的等距点,同时使四边形BCQP的面积为正方形ABCD面 在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE垂直于PA,DF垂直于PA,垂足分别为E,F,求证:DF加EF等于BE 在正方形ABCD中点E是AD上一动点MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O在正方形ABCD中,点E是AD上一动点MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交AB,CD于P,Q.(1)如图1,当点E在边AD上时, 今年的一道初中几何题请写出详细过程正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF垂直CD于点F.如图一,当点P与点O重合是,显然有DF=CF.(1)如图二,若点P在线段AO上(不与A、O 在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,. (1)如图在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,.(1)如 在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F 请探索BE,DF,EF的关系在正方形ABCD中,点P是CD上一动点,链接PA,分别过点B,D作BE垂直PA,DF垂直PA,垂足为E,F1.请探索BE,DF, 操作:如图,在正方形ABCD中如图,在正方形ABCD中,点P是CD上一动点(与点C、D不重合),使三角尺的直角顶点P重合,并且一条直角边始终经过点B,另一条直角边与正方形的某一边所在直线交于点E,探 正方形ABCD中,点O式对角线AC的中点,P是对角线AC上一动点,过点P正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P 如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过 边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=X S△PCE=Y当点P 边长为4的正方形abcd中.边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,(1)求证:DF=EF;(2)当点P在线段AO上时,求y 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E.1、求证:DF=EF 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E.①求证:DF=EF② 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E.1、求证:DF=EF