(1*2*3*4*...*99*100)的末尾有几个零?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:42:18
(1*2*3*4*...*99*100)的末尾有几个零?
xUR@}l:CY8 "6E**cGޤ$| m''{MdcP@( IR`u5fx9͒gs#?.|ic-iOa)C=>uE]~懆UnaP|"SWM=h!SL=l˦bꫦbb]5vbx% MکemNV:F$vg*!%K!le7*XREv1:Avd,?-~R>kQYǏ/Xw"Y Scw@CSyo"Ȉ} ᙴs8v t-f[(QR*/4W,TYG\gݚ43X~\3L_;"B/؊-#n7T/!ٗBr gwN-*qnp>AqnIuEҴ*(:8]BM҂υSg*4!~24pY>:Dڎ IYHx{0Pr|!g*,(Kr69|# xaDq[*(n#+"¬͂ BOֈ-o S àFO^FF4;H =j? 5jfMhw.acwQ7=]%?>Z%8#w.6mQ~ba"\?=+6$hMAGd"Md>eoML1}Tq.ҧwּijTpӳF'BX]Xo4:GU!?~gry:*0dUq'

(1*2*3*4*...*99*100)的末尾有几个零?
(1*2*3*4*...*99*100)的末尾有几个零?

(1*2*3*4*...*99*100)的末尾有几个零?
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10.
连乘积的末尾有几个0?
答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?
现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.
刚好4个0?会不会再多几个?
请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30.现在乘积的末尾共有几个0?
很明显,至少有6个0.
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.
乘到30的会做了,无论多大范围的也就会做了.
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100.现在的乘积末尾共有多少个0?
答案是24个.

2个,用二项式定理

21个
看有几个10
每个被5整除的可以提供一个10
100提供两个