X2 7xy-18y2-5x 43y-24如何进行因式分解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:31:39
X2 7xy-18y2-5x 43y-24如何进行因式分解
xW[OH+~em%A_*VjE/[ ! )B[aXF{PAtBBVRL#5XW%p2ڍ4e} cW%k@nxM|^ ӻ _0[#CRL#|!{[YשX40!a7q6̉#5ۧy LfV_tAz%\'I߷HBl)57{dq_K(ˤl)^xg{Otc&.R~" JIMuSwO1(SKxR'刡$hnp`H{"[xM NH,M%!@N!5&jC !I*a-Gֆ88S}YQ1AS`Z)NY<ҞS%-8B`'= ?!HhmBFrtOvQ?Ʌ!cvL밇 G!βUYu9u;}봙|N 6Kޝ

X2 7xy-18y2-5x 43y-24如何进行因式分解
X2 7xy-18y2-5x 43y-24如何进行因式分解

X2 7xy-18y2-5x 43y-24如何进行因式分解
这个题可以 用大十字相乘法.
即双十字相乘法.
先把X2+7xy-18y2 配方
得(-3X+9Y)(8X-2Y)
然后再把X的相配进去
得 (X+9Y+8)(X-2Y-3)
再给你复制一个双十字的解释吧
解形如ax^2+bxy+cy^2+dx+ey+f 的二次六项式 在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则.则原式=(mx+py+j)(nx+qy+k)
例:3x^2+5xy-2y^2+x+9y-4=(x+2y-1)(3x-y+4) 因为3=1×3,-2=2×(-1),-4=(-1)×4,而1×(-1)+3×2=5,2×4+(-1)(-1)=9,1×4+3×(-1)=1
双十字相乘的迁移
分解二次五项式
要诀:把缺少的一项当作系数为0,0乘任何数得0,例:ab+b^2+a-b-2 =0×1×a^2+ab+b^2+a-b-2 =(0×a+b+1)(a+b-2) =(b+1)(a+b-2)
分解四次五项式
提示:设x^2=y,用拆项法把cx^2拆成mx^2与ny之和.例:2x^4+13x^3+20x^2+11x+2 =2y^2+13xy+15x^2+5y+11x+2 =(2y+3x+1)(y+5x+2) =(2x^2+3x+1)(x^2+5x+2) =(x+1)(2x+1)(x^2+5x+2) 简单来说:分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax^2+bxy+cy^2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x^2-7xy-22y^2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为 2x^2-(5+7y)x-(22y^2-35y+3),可以看作是关于x的二次三项式. 对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为 即 -22y^2+35y-3=(2y-3)(-11y+1). 再利用十字相乘法对关于x的二次三项式分解 所以 原式=〔x+(2y-3)〕〔2x+(-11y+1)〕 =(x+2y-3)(2x-11y+1). (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3; (2y-3)(-11y+1)=-22y^2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax^2+bxy+cy^2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax^2+bxy+cy^2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 2.求根法 我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x^2-3x+2,g(x)=x^5+x^2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)^2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
希望能够帮助到您