设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:53:10
设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an
xRJ@~I69͋ B =(Xn jA-LӴ=1҃dovF<{,ϓA1^~Y nKjrn惤Fɾ8^#{+~r%4'E;͇.cɒv[AkpJ,fsj`vlN>IrD*Q: (CϷޚmPYV"r@ Ff܀.\<} k.nAA)Ɇ|{+t1j[8=)>NOw bdh)Z|px>wb 0;֤^pStʍV}l)

设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an
设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an
2,设数列an满足a1=2,a(n+1)=3an+2n,求an

设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an
1.
a(n+1)=3an+2^(n-1)
a(n+1)+2^n=3an+2^(n-1)+2^n=3[an+2^(n-1)]
所以数列{an+2^(n-1)}是等比数列
故an+2^(n-1)=[a1+2^(1-1)]*3^(n-1)=3^n
所以an=3^n-2^(n-1)
2.
a(n+1)=3an+2n
a(n+1)+n+1=3an+2n+n+1=3(an+n)+1
令bn=an+n
则b(n+1)=3bn+1
b(n+1)+1/2=3bn+1+1/2=3(bn+1/2)
所以{bn+1/2}是等比数列
故bn+1/2=(b1+1/2)*3^(n-1)=(a1+1+1/2)*3^(n-1)=(7/2)*3^(n-1)
所以bn=(7/2)*3^(n-1)-1/2
故an=bn-n=(7/2)*3^(n-1)-1/2-n

a(n+1)=3an+2^(n-1)
a(n+1)+2*2^(n-1)=3an+2^(n-1)+2*2^(n-1)
a(n+1)+2^n=3an+3*2^(n-1)
a(n+1)+2^n=3【an+2^(n-1)】 (n>=2)
a2=3a1+1=7
所以{a(n+1)+2^n}是一个以7为首项,3为公比的等比数列,
an+2^(n-1)=7*3^(n-1)
an=7*3^(n-1)-2^(n-1)

设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an 设数列an满足a1=2,a(n+1)-an=3x2的2n-1次方,求数列an的通项公式 设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 数列[An]满足a1=2,a(n+1)=3an-2 求an 设数列an满足a1=1,a2=4,a3=9,an=a(n-1)+a(n-2)-a(n-3).则a2011= 设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)求通项an 设数列{an}满足a1=2,a(n+1)-an=3乘以2的(2n-1}次方 1.求数列的通项公式; 2.令bn=n乘以an,求数列前n项和 设数列an满足a1+3a2+3^2a3+……+3^(n-1)an=n/3,a是正整数,设bn=n/an,求数列bn的前n项和 数列{an}满足a1=3,a n+1=2an,则a4等于 设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差数列? 数列{an}满足a1=2,a(n+1)=2an+n+2,求an 设数列{an}满足a1=a,an+1=can+1-c,n∈N*,其中a,c为实数,且c≠0,a≠11)求证{an-1}是等比数列2)求数列{an}的通项公式3)设a=1/2,c=1/2,bn=n(1-an),n∈N*,求证数列{bn}的前n和sn<2设数列{an}满足a1(第一项)=a,an+1(第n+1 设数列an满足a1+2a2+3a3+.+nan=2^n 1求数列a的通项 2设bn=n^2an 求数列的前n项和Sn求大神帮助 设数列AN满足A1=2,A(N+1)-AN=3X2^(2N-1)?(1)求数列AN的通项公式2,令BN=N AN ,求BN前N项和SN 设数列{an}满足a1=2,a(n+1)-an=3*2^2n-11)求数列{an}的通项公式2)令bn=nan,求数列{bn}前n项和Sn 已知函数f(x)=x/(x+1),若数列{An}(n属於正整数)满足A1=1,A(n+1)=f(An)(1)设bn=1/An,求证数列{bn}是等差数列,(2)求数列{An}的通向公式An(3)设数列{Cn}满足:Cn=2^n/An,求数列{C 数列{An}满足A1=1,A(n+3)=An+3,A(n+2)=An +2 已知数列{an}满足对任意的正整数n,都有an>0,且a1^3+a2^3+..an^3=(a1+a2..an)^2,设数列{1/an*an+2}设数列{1/an*an+2}的前n项和为Sn,不等式Sn>1/3loga(1-a)对于任意正整数n恒成立,求实数a的取值范围